您当前所在位置:首页 > 高考 > 高考数学 > 高考数学试题

2016届高考数学一轮专题复习概率与统计仿真练习(含答案)

编辑:

2016-01-21

三、解答题

9.(2015·北京卷)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.

商品

顾客人数  甲 乙 丙 丁 100 √ × √ √ 217 × √ × √ 200 √ √ √ × 300 √ × √ × 85 √ × × × 98 × √ × × (1)估计顾客同时购买乙和丙的概率;

(2)估计顾客在甲、乙、丙、丁中3种商品的概率;

(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?

解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,

所以顾客同时购买乙和丙的概率可以估计为=0.2.

(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.

所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为=0.3.

(3)与(1)同理,可得:

顾客同时购买甲和乙的概率可以估计为=0.2,

顾客同时购买甲和丙的概率可以估计为=0.6,

顾客同时购买甲和丁的概率可以估计为=0.1.

所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.

10.(2015·湖南卷)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1、b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.

(1)用球的标号列出所有可能的摸出结果;

(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.

解 (1)所有可能的摸出结果为:{A1,a1},{A1,a2},{A1,b1},{A1,b2},{A2,a1},{A2,a2},{A2,b1},{A2,b2};{B,a1},{B,a2},{B,b1},{B,b2}共计12种结果.

(2)不正确,理由如下:设“中奖”为事件A,则P(A)==,P(A)=1-=,P(A)

11.现有8名数理化成绩优秀者,其中A1,A2,A3数学成绩优秀,B1,B2,B3物理成绩优秀,C1,C2化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛.

(1)求C1被选中的概率;

(2)求A1和B1不全被选中的概率.

解 (1)从8人中选出数学、物理、化学成绩优秀者各1名,其一切可能的结果组成的基本事件空间为

Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)}.

由18个基本事件组成.由于每一个基本事件被抽取的机会均等.因此这些基本事件的发生是等可能的.

用M表示“C1恰被选中”这一事件,则M={(A1,B1,C1),(A1,B2,C1),(A1,B3,C1),(A2,B1,C1),(A2,B2,C1),(A2,B3,C1),(A3,B1,C1),(A3,B2,C1),(A3,B3,C1)}.

事件M由9个基本事件组成,因而P(M)==.

(2)用N表示“A1,B1不

则其对立事件N表示“A1,B1全被选中”这一事件,

由于N={(A1,B1,C1),(A1,B1,C2)},事件N由2个基本事件组成,所以P(N)==.

由对立事件的概率公式得P(N)=1-P(N)=1-=.

概率与统计仿真练习及答案的全部内容就是这些,精品学习网希望对考生复习有帮助。

2016年高考第一轮复习备考专题已经新鲜出炉了,专题包含高考各科第一轮复习要点、复习方法、复习计划、复习试题,大家来一起看看吧~

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。