编辑:sx_liujy
2016-02-09
三角形是几何图案的基本图形,下面是精品学习网整理的三角形中的几何计算专项训练,希望对考生复习有帮助。
1.(2015陕西高考,理17)△ABC的内角A,B,C所对的边分别为a,b,c,向量m=(a,b)与n=(cos A,sin B)平行.
(1)求A;
(2)若a=,b=2,求△ABC的面积.
(1)解:因为mn,所以asin B-bcos A=0.
由正弦定理,得sin Asin B-sin Bcos A=0.
又sin B≠0,从而tan A=.
由于00,所以c=3.
故△ABC的面积为bcsin A=.
解法二:由正弦定理,得,
从而sin B=.
又由a>b,知A>B,所以cos B=.
故sin C=sin(A+B)=sin
=sin Bcos+cos Bsin.
所以△ABC的面积为absin C=.
10.△ABC的三个内角A,B,C所对应的边分别为a,b,c,asin Asin B+bcos2A=a.
(1)求;
(2)若c2=b2+a2,求B.
解:(1)由正弦定理,得sin2Asin B+sin Bcos2A=sin A,
即sin B(sin2A+cos2A)=sin A.
故sin B=sin A,所以.
(2)由余弦定理和c2=b2+a2,
得cos B=.
由(1)知b2=2a2,故c2=(2+)a2.
可得cos2B=,
又cos B>0,故cos B=,所以B=45°.
三角形中的几何计算专项训练分享到这里,更多内容请关注高考数学试题栏目。
相关链接
标签:高考数学试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。