编辑:sx_haody
2014-03-31
摘要:精品学习网为大家带来高考数学题型,希望大家喜欢下文!
1.要及时对做错题目进行分析,找出错误原因,并尽快订正。
有些学生在做错题目后,往往会自我安慰,将错题原因归结为粗心,这或许有一些因素在里面,但对大部分学生来说,题目做错的原因是多方面的。比如,在讨论有关等比数列前n项和的问题时,许多学生漏掉了q=1这种情况,这实际上是对等比数列求和公式的不熟练所造成的,假如能真正掌握此公式的推导过程,熟知其特点,在做题时,是不会轻易漏解的。又如:方程ɑx2+2x+1=0的解集只有一个元素,求a的取值,许多学生会漏掉a=0这种情况。发生这类错误,其实是对题目中到底是几次方程还没彻底搞清楚,先入为主将它看成是一元二次方程所致,这不是单纯的粗心问题,而是概念的模糊。像这些错误,如不经过仔细分析,并采取有效措施,以后还会犯同样错误。对做错题目的及时反馈,是复习中的重要一环,应引起广大考生的普遍重视。
2.对相同知识点、相同题型考题的整理,也是复习中的重点。
许多知识点,在各类试卷中均有出现,通过复习,整理出它们共同方法,减少以后碰到相同题型时的思考时间。如:设函数f(x)是定义域为R的函数,且 f(x+2)[1-f(x)]=1+f(x),又f(2)=2+2姨,则f(2006)=________,在此类题目中,要求的数与已知相差太大,要求出结论,必定有周期性在里面,因此先应从求周期入手。又如:设不等式2x-1>m(x2-1)对满足∣m∣≤2的一切实数m的取值都成立,求x的取值范围。此类题中,给出了字母m的取值范围,若将整个式子化为关于m的一次式f(m),则由一次函数(或常数函数)在定义区间内的单调性,可通过端点值恒大于0,求得x的取值范围。考生们在复习中,如能对这些相同题型的题目进行整理,相信一定能提高应试时的准确性。
3.对数学思想方法的整理。
近年来,上海市高考中明确指出知识考查的同时要考数学思想方法,这其中主要包括:函数与方程的思想方法、数形结合的思想方法、分类讨论的思想方法、转化与化归的思想方法等思想方法。如2005年上海市秋季高考(理科卷)第16题,就用到了数形结合的数学思想。平时在复习中,如果加强对数学思想方法的训练,不仅能提高应试能力,还能真正提高自己的数学学习能力和思维能力。
4.对能力型问题的整理。
近几年高考中,出现了许多新的、根本性的变化,即涌现了大量的考查能力的题目,新题型也不断出现。在题目的设计上有意识的控制运算量,加大了思维量,并进一步加大了数学应用问题的考查力度,同时加大了对数学知识更新和数学理论形成过程的考查,以及对探究性和创新能力的考查,这些已成为考试命题的方向。如:上海市2006年春季高考最后一题,将研究性学习的内容渗透进考试题目中,为高考命题开拓了新的空间。考生们在复习时,适当研究一下这些新问题,找到其中规律,做到心中有底。
高考数学题型就介绍到这里了,更多精彩内容请继续关注精品学习网!
相关推荐:
标签:高考数学题型归纳
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。