编辑:sx_liujy
2016-09-07
我们约定由等比数列的组合生成的新数列为派生数列,派生数列有非常漂亮的性质。由精品学习网编辑老师精心提供,最新17年高考数学题型归纳讲解,因此老师及家长请认真阅读,关注孩子的成长。
性质1 设等比数列{an}的公比为q,k∈N,k≥1,i∈N,i≥1,若b1=ai,b2=ai+k+1,b3=ai+2(k+1),…,bn=ai+(n-1)(k+1),…,则数列{bn}仍为等比数列,其公比为qk+1.
特别地,当i=1,k=1时,{bn}成为{an}的所有奇数项组成的数列;当i=2,k=1时,{bn}由{an}的所有偶数项组成,显然它们均为等比数列.且公比为q2.
性质2 设等比数列{an}的公比为q,k∈N.k≥1,若b1=a1+a2+…+ak,b2=ak+1+ak+2+…+a2k,…,bn=a(n-1)k+1+a(n-1)k+2+…+ank,…,则数列{bn}仍为等比数列,即Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k,…成等比数列,其公比为qk.
以上就是高考频道最新17年高考数学题型归纳讲解:等比数列派生数列的全部内容,精品学习网会在第一时间为大家提供,更多相关信息欢迎大家持续关注!
相关链接
标签:高考数学题型归纳
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。