您当前所在位置:首页 > 高考 > 高考数学 > 高考数学知识点

高考数学一轮复习知识点:等比数列及其前n项和

编辑:sx_liujy

2016-09-05

在等比数列中,依次每k项之和仍成等比数列。以下是高考数学一轮复习知识点,精品学习网高考频道请考生牢记。

一个推导

利用错位相减法推导等比数列的前n项和:

Sn=a1+a1q+a1q2+…+a1qn-1,

同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

两个防范

(1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.

(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.

三种方法

等比数列的判断方法有:

(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N*),则{an}是等比数列.

(2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N*),则数列{an}是等比数列.

(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N*),则{an}是等比数列.

注:前两种方法也可用来证明一个数列为等比数列.

高考数学一轮复习知识点:等比数列及其前n项和的全部内容就为大家分享到这里,更多精彩内容请考生继续关注精品学习网最新内容。

相关链接

2017年高考数学重点知识点讲解:直线方程 

2016-2017高考数学一轮复习数列易错知识点  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。