您当前所在位置:首页 > 高中 > 高二 > 高二数学 > 高二数学必修

新人教版高二数学必修3第一章要点:算法案例

编辑:sx_shangjianm

2017-09-21

嘀嗒嘀嗒,时钟欢乐地走过假期的每一天;叮咚叮咚,新学期的门铃已经悄然响起。学校已敞开温暖的怀抱,欢迎同学们的到来!一起来看看新人教版高二数学必修3第一章要点

新人教版高二数学必修3第一章要点:算法案例

1.辗转相除法是用于求最大公约数的一种方法,这种算法由欧几里得在公元前 年左右首先提出,因而又叫欧几里得算法.

2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的最大公约数.

3.更相减损术是一种求两数最大公约数的方法.其基本过程是:对于给定的两数, 用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的最大公约数.

4.秦九韶算法是一种用于计算一元 二次多项式的值的方法.

5.常用的排序方法是直接插入排序和冒泡排序.

6.进位制是人们为了计数和运算方便而约定的记数系统.“满 进一”,就是k进制, 进制的基数是k.

7.将 进制的数化为十进制数的方法是:先将 进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.

8.将十进制数化为 进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商, 直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的 进制数.

★重难点突破★

1.重点:理解辗转相除法与更相减损术的原理,会求两个数的最大公约数;理解秦九韶算法原理,会求一元多项式的值;会对一组数据按照一定的规则进行排序;理解进位制,能进行各种进位制之间的转化.

2.难点:秦九韶算法求一元多项式的值及各种进位制之间的转化.

3.重难点:理解辗转相除法与更相减损术、秦九韶算法原理、排序方法、进位制之间的转化方法.

【同步练习题】

1、在对16和12求最大公约数时,整个操作如下:(16,12)→(4,12)→(4,8)→(4,4),由此可以看出12和16的最大公约数是( )

A、4  B、12  C、16  D、8

2、下列各组关于最大公约数的说法中不正确的是( )

A、16和12的最大公约数是4 B、78和36的最大公约数是6

C、85和357的最大公约数是34 D、105和315的最大公约数是105

新人教版高二数学必修3第一章要点是学习的重点内容,也是考试的重点内容,同学们要警觉起来,各科成绩的提高是同学们提高总体学习成绩的重要途径~

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。