您当前所在位置:首页 > 高中 > 高二 > 高二数学 > 高二数学暑假作业

2015年高中二年级数学暑假作业:选修2-2作业本答案

编辑:sx_zhaolf

2015-07-15

以下是精品学习网为大家整理的高中二年级数学暑假作业,关于选修2-2作业本答案,希望可以解决您所遇到的问题,加油,精品学习网一直陪伴您。

第一章导数及其应用

1?1变化率与导数

1.1.1变化率问题

1.D2.D3.C4.-3Δt-65.Δx+26.3?31

7.(1)0?1(2)0?21(3)2?18.11m/s,10?1m/s9.25+3Δt10.128a+64a2t11.f(Δx)-f(0)Δx=1+Δx(Δx>0),

-1-&Delta;x(&Delta;x<0)

1?1?2导数的概念

1.D2.C3.C4.-15.x0,&Delta;x;x06.67.a=18.a=2

9.-4

10.(1)2t-6(2)初速度为v0=-6,初始位置为x0=1(3)在开始运动后3s,在原点向左8m处改变(4)x=1,v=6

11.水面上升的速度为0?16m/min.提示:&Delta;v=&Delta;h75+15&Delta;h+(&Delta;h)23,

则&Delta;v&Delta;t=&Delta;h&Delta;t&times;75+15&Delta;h+(&Delta;h)23,即lim&Delta;t&rarr;0&Delta;v&Delta;t=lim&Delta;t&rarr;0&Delta;h&Delta;t&times;75+15&Delta;h+(&Delta;h)23=lim&Delta;t&rarr;0&Delta;h&Delta;t&times;25,

即v&prime;(t)=25h&prime;(t),所以h&prime;(t)=125&times;4=0?16(m/min)

1?1?3导数的几何意义(一)

1.C2.B3.B4.f(x)在x0处切线的斜率,y-f(x0)=f&prime;(x0)(x-x0)

5.36.135&deg;7.割线的斜率为3?31,切线的斜率为38.k=-1,x+y+2=0

9.2x-y+4=010.k=14,切点坐标为12,12

11.有两个交点,交点坐标为(1,1),(-2,-8)

1?1?3导数的几何意义(二)

1.C2.A3.B4.y=x+15.&plusmn;16.37.y=4x-18.1039.19

10.a=3,b=-11,c=9.提示:先求出a,b,c三者之间的关系,即c=3+2a,

b=-3a-2,再求在点(2,-1)处的斜率,得k=a-2=1,即a=3

11.(1)y=-13x-229(2)12512

1?2导数的计算

1?2?1几个常用函数的导数

1.C2.D3.C4.12,05.45&deg;6.S=&pi;r2

7.(1)y=x-14(2)y=-x-148.x0=-3366

9.y=12x+12,y=16x+32.提示:注意点P(3,2)不在曲线上10.证明略,面积为常数2

11.提示:由图可知,点P在x轴下方的图象上,所以y=-2x,则y&prime;=-1x,令y&prime;=-12,得x=4,故P(4,-4)

1?2?2基本初等函数的导数公式及导数的运算法则(一)

1.A2.A3.C4.35.2lg2+2lge6.100!

7.(1)1cos2x(2)2(1-x)2(3)2excosx8.x0=0或x0=2&plusmn;2

9.(1)&pi;4,&pi;2(2)y=x-11

10.k=2或k=-14.提示:设切点为P(x0,x30-3x20+2x0),则斜率为k=3x20-6x0+2,切线方程为y-(x30-3x20+2x0)=(3x20-6x0+2)(x-x0),因切线过原点,整理后常数项为零,即2x30-3x20=0,得x0=0或x0=32,代入k=3x20-6x0+2,得k=2,或k=-14

11.提示:设C1的切点为P(x1,x21+2x1),则切线方程为:y=(2x1+2)x-x21;设C2的切点为Q(x2-x22+a),则切线方程为:y=-2x2x+x22+a.又因为l是过点P,Q的公切线,所以x1+1=-x2,

-x21=x22+a,消去x2得方程2x21+2x1+1+a=0,因为C1和C2有且仅有一条公切线,所以有&Delta;=0,解得a=-12,此时切线方程为y=x-14

2基本初等函数的导数公式及导数的运算法则(二)

1.D2.A3.C4.50x(2+5x)9-(2+5x)10x25.336.97.a=1

8.y=2x-4,或y=2x+69.&pi;6

10.y&prime;=x2+6x+62x(x+2)(x+3).提示:y=lnx(x+2)x+3=12[lnx+ln(x+2)-ln(x+3)]

11.a=2,b=-5,c=2,d=-12

1?3导数在研究函数中的应用

1?3?1函数的单调性与导数

1.A2.B3.C4.33,+&infin;5.单调递减6.①②③

7.函数在(1,+&infin;),(-&infin;,-1)上单调递增,在(-1,0),(0,1)上单调递减

8.在区间(6,+&infin;),(-&infin;,-2)上单调递增,在(-2,6)上单调递减9.a&le;-3

10.a<0,递增区间为:--13a,-13a,递减区间为:-&infin;,--13a,-13a,+&infin;

11.f&prime;(x)=x2+2ax-3a2,当a<0时,f(x)的递减区间是(a,-3a);当a=0时,f(x)不存在递减区间;当a>0时,f(x)的递减区间是(-3a,a)

1?3?2函数的极值与导数

1.B2.B3.A4.55.06.4e27.无极值

8.极大值为f-13=a+527,极小值为f(1)=a-1

9.(1)f(x)=13x3+12x2-2x(2)递增区间:(-&infin;,-2),(1,+&infin;),递减区间:(-2,1)

10.a=0,b=-3,c=2

11.依题意有1+a+b+c=-2,

3+2a+b=0,解得a=c,

b=-2c-3,从而f&prime;(x)=3x2+2cx-(2c+3)=(3x+2c+3)&middot;(x-1).令f&prime;(x)=0,得x=1或x=-2c+33

①若-2c+33<1,即c>-3,f(x)的单调区间为-&infin;,-2c+33,[1,+&infin;);单调减区间为-2c+33,1

②若-2c+33>1,即c<-3,f(x)的单调增区间为(-&infin;,1],-2c+33,+&infin;;单调减区间为1,-2c+33

1?3?3函数的最大(小)值与导数

1.B2.C3.A4.x>sinx5.06.[-4,-3]7.最小值为-2,最大值为1

8.a=-29.(1)a=2,b=-12,c=0(2)最大值是f(3)=18,最小值是f(2)=-82

10.最大值为ln2-14,最小值为0

11.(1)h(t)=-t3+t-1(2)m>1.提示:令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,则当t&isin;(0,2)时,函数g(t)<0恒成立,即函数g(t)的最大值小于0即可

1?4生活中的优化问题举例(一)

1.B2.C3.D4.32m,16m5.40km/h6.1760元7.115元

8.当q=84时,利润最大9.2

10.(1)y=kx-12+2000(x-9)(14&le;x&le;18)(2)当商品价格降低到每件18元时,收益最大

11.供水站建在A,D之间距甲厂20km处,可使铺设水管的费用最省

1?4生活中的优化问题举例(二)

1.D2.B3.D4.边长为S的正方形5.36.10,196007.2ab

8.4cm

9.当弯成圆的一段长为x=100&pi;&pi;+4cm时,面积之和最小.

提示:设弯成圆的一段长为x,另一段长为100-x,正方形与圆的面积之和为S,则S=&pi;x2&pi;2+100-x42(0

10.h=S43,b=2S42711.33a

以上就是精品学习网为大家整理的高中二年级数学暑假作业,希望对您有所帮助,最后祝同学们学习进步。

相关推荐:

川省峨眉山高二数学暑假作业  

2015年高二数学选修2-1作业本答案参考  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。