您当前所在位置:首页 > 高中 > 高二 > 高二数学 > 高二数学知识点

高二数学学习:高二数学选修1圆锥曲线

编辑:sx_zhangh

2014-02-18

为了帮助学生们更好地学习高中数学,精品学习网精心为大家搜集整理了“高二数学学习:高二数学选修1圆锥曲线”,希望对大家的数学学习有所帮助!

高二数学学习:高二数学选修1圆锥曲线

第二章:圆锥曲线

知识点:

1、平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.

2、椭圆的几何性质:

焦点的位置焦点在轴上焦点在轴上

图形

标准方程

范围且且

顶点、

、、

轴长短轴的长 长轴的长

焦点、、

焦距

对称性关于轴、轴、原点对称

离心率

准线方程

3、设是椭圆上任一点,点到对应准线的距离为,点到对应准线的距离为,则.

4、平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.

5、双曲线的几何性质:

焦点的位置焦点在轴上焦点在轴上

图形

标准方程

范围或,或,

顶点、、

轴长虚轴的长 实轴的长

焦点、、

焦距

对称性关于轴、轴对称,关于原点中心对称

离心率

准线方程

渐近线方程

6、实轴和虚轴等长的双曲线称为等轴双曲线.

7、设是双曲线上任一点,点到对应准线的距离为,点到对应准线的距离为,则.

8、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线.

9、抛物线的几何性质:

标准方程

图形

顶点

对称轴轴轴

焦点

准线方程

离心率

范围

10、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即.

考点:1、圆锥曲线方程的求解

2、直线与圆锥曲线综合性问题

3、圆锥曲线的离心率问题

典型例题:★★1.设是坐标原点,是抛物线的焦点,是抛物线上的一点,与轴正向的夹角为,则为( )

A. B. C. D.

★★2.与直线和曲线都相切的半径最小的圆的标准方程是 .

★★★3.(本小题满分14分)

已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为3,最小值为1.

(1)求椭圆的标准方程;

(2)若直线与椭圆相交于两点(不是左右顶点),且以 为直径的图过椭圆的右顶点.求证:直线过定点,并求出该定点的坐标.

经过精心的整理,有关“高二数学学习:高二数学选修1圆锥曲线”的内容已经呈现给大家,祝大家学习愉快!

相关推荐:

高二数学知识点:高二数学知识详细整理

高二数学知识点:高二数学必修5识点总结

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。