您当前所在位置:首页 > 高中 > 高二 > 高二数学 > 高二数学知识点

高二数学知识点汇总:旋转体

编辑:

2014-07-14

③圆台的母线l,高h和上、下两底圆的半径r、R,组成一个直角梯形,且有

l2=h2+(R-r)2

圆台的有关计算问题,常归结为解这个直角梯形。

(4)球的性质,着重掌握其截面的性质。

①用任意平面截球所得的截面是一个圆面,球心和截面圆圆心的连线与这个截面垂直。

②如果用R和r分别表示球的半径和截面圆的半径,d表示球心到截面的距离,则

R2=r2+d2

即,球的半径,截面圆的半径,和球心到截面的距离组成一个直角三角形,有关球的计算问题,常归结为解这个直角三角形。

3.圆柱、圆锥、圆台和球的表面积

(1)圆柱、圆锥、圆台和多面体一样都是可以平面展开的。

①圆柱、圆锥、圆台的侧面展开图,是求其侧面积的基本依据。

圆柱的侧面展开图,是由底面图的周长和母线长组成的一个矩形。

②圆锥和侧面展开图是一个由两条母线长和底面圆的周长组成的扇形,其扇形的圆心角为

③圆台的侧面展开图是一个由两条母线长和上、下底面周长组成的扇环,其扇环的圆心角为

这个公式有利于空间几何体和其侧面展开图的互化

显然,当r=0时,这个公式就是圆锥侧面展开图扇形的圆心角公式,所以,圆锥侧面展开图扇形的圆心角公式是圆台相关角的特例。

(2)圆柱、圆锥和圆台的侧面公式为

S侧=π(r+R)l

当r=R时,S侧=2πRl,即圆柱的侧面积公式。

当r=0时,S侧=rRl,即圆锥的面积公式。

要重视,侧面积间的这种关系。

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。