您当前所在位置:首页 > 高中 > 高二 > 高二数学 > 高二数学知识点

数学高二必修三人教版第二章知识点:变量间的相关关系

编辑:sx_gaohm

2016-09-18

数学是学习和研究现代科学技术必不可少的基本工具。精品小编准备了数学高二必修三人教版第二章知识点,具体请看以下内容。

知识点1:变量之间的相关关系

两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。相关关系是一种非确定性关系,如长方体的高与体积之间的关系就是确定的函数关系,而人的身高与体重的关系,学生的数学成绩好坏与物理成绩的关系等都是相关关系。 注意:两个变量之间的相关关系又可分为线性相关和非线性相关,如果所有的样本点都落在某一函数曲线的附近,则变量之间具有相关关系(不确定性的关系),如果所有样本点都落在某一直线附近,那么变量之间具有线性相关关系,相关关系只说明两个变量在数量上的关系,不表明他们之间的因果关系,也可能是一种伴随关系。 点睛:两个变量相关关系与函数关系的区别和联系

相同点:两者均是两个变量之间的关系,不同点:函数关系是一种确定的关系,如匀速直线运动中时间t与路程s的关系,相关关系是一种非确定的关系,如一块农田的小麦产量与施肥量之间的关系,函数关系是两个随机变量之间的关系,而相关关系是非随机变量与随机变量之间的关系;函数关系式一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。

知识点2.散点图.

1.在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图。

2.从散点图可以看出如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这种近似的过程称为曲线拟合。

3.对于相关关系的两个变量,如果一个变量的值由小变大时,另一个变量的的值也由小变大,这种相关称为正相关,正相关时散点图的点散布在从左下角到由上角的区域内。

如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关,负相关时散点图的点散步在从左上角到右下角的区域。

注意:画散点图的关键是以成对的一组数据,分别为此点的横、纵坐标,在平面直角坐标系中把其找出来,其横纵坐标的单位长度的选取可以不同,高中数学,应考虑数据分布的特征,散点图只是形象的描述点的分布,如果点的分布大致呈一种集中趋势,则两个变量可以初步判断具有相关关系,如图中数据大致分布在一条直线附近,则表示的关系是线性相关,如果两个变量统计数据的散点图呈现如下图所示的情况,则两个变量之间不具备相关关系,例如学生的身高和学生的英语成绩就没有相关关系。

点睛:散点图又称散点分布图,是以一个变量为横坐标,另一变量为纵坐标,利用散点(坐标点)的分布形态反映变量统计关系的一种图形。特点是能直观表现出影响因素和预测对象之间的总体关系趋势。优点是能通过直观醒目的图形方式反映变量间关系的变化形态,以便决定用何种数学表达方式来模拟变量之间的关系。散点图不仅可传递变量间关系类型的信息,也能反映变量间关系的明确程度

知识点3:回归直线 (1)回归直线的定义

如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。

(2)回归直线的特征

如果能够求出这条回归直线的方程(简称回归方程),那么我们就可以比较清楚的了解对应两个变量之间的相关性,就像平均数可以作为一个变量的数据的代表一样,这条直线也可以作为两个变量之间具有相关关系的代表。

高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的数学高二必修三人教版第二章知识点,希望大家喜欢。

相关推荐:

高二数学上册人教版随机抽样知识点总结

数学高二人教版必修三第一章知识点:算法案例

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。