编辑:sx_chenj
2014-05-05
高三下册数学试题2014
高三下册数学试题一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合 A={x|1
A (1,4) B (3,4) C (1,3) D (1,2)∪ (3,4)
2. 已知i是虚数单位,则 =
A 1-2i B 2-i C 2+i D 1+2i
3. 设a∈R ,则“a=1”是“直线l1:ax+2y=0与直线l2 :x+(a+1)y+4=0平行 的
A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要条件
4.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是
5.设a,b是两个非零向量。
A.若|a+b|=|a|-|b|,则a⊥b
B.若a⊥b,则|a+b|=|a|-|b|
C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λa
D.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|
6.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有
A.60种 B.63种 C.6 5种 D.66种
7.设S。是公差为d(d≠0)的无穷等差数列﹛an﹜的前n项和,则下列命题错误的是
A.若d<0,则列数﹛Sn﹜ 有最大项
B.若数列﹛Sn﹜有最大项,则d<0
C.若数列﹛Sn﹜
D.是递增数列,则对任意n∈Nn,均有Sn>0
8.如图,F1,F2分别是双曲线C: (a,b>0)的在左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别教育P,Q两点,线段PQ的垂直平分线与x轴交与点M,若|MF2|=|F1F2|,则C的离心率是
A. B C.. D.
9.设a大于0,b大于0.
A.若2a+2a=2b+3b,则a>b B.若2a+2a=2b+3b,则a>b
C.若2a-2a=2b-3b,则a>b D.若2a-2a=ab-3b,则a
10. 已知矩形ABCD,AB=1,BC= 。将△沿矩形的对角线BD所在的直线进行翻折,在翻折过程中。
A.存在某 个位置,使得直线AC与直线BD垂直.
B.存在某个位置,使得直线AB与直线CD垂直.
C.存在某个位置,使得直线AD与直线BC垂直.
D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直
二、填空题:本大题共7小题,每小题4分,共28分。
11.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于________cm3.
12.若某程序框图如图所示,则该程序运行后输出的值是__________。
13.设公比为q(q>0)的等 比数列{an}的前n项和为Sn。若S2=3a2+2,S4=3a4+2,则q=______________。
14.若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+……+a5(1+x)5,其中a0,a1,a2,…a5为实数,则a3=______________。xkb1.com
15.在△ABC中,M是BC的中点,AM=3,BC=10,则 =________.
16.定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=_______。
17.设a∈R,若x>0时均有[(a-1)x-1](x2-ax-1)≥0,则a=__________。
三、解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。
18.(本题满分14分)在△ABC中,内角A,B,C的对边分别为a,b,c。已知cosA= ,sinB= C。
(1)求tanC的值;
(2)若a= ,求△ABC的面积。
19.(本题满分14分)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分。现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和。
(1)求X的分布列;
(2)求X的数学期望E(X)。
20.(本题满分14分)如图,在四棱锥P-ABCD中,底面是边长为 的菱形,∠BAD=120°,且PA⊥平面ABCD,PA= ,M,N分别为PB,PD的中点。
(1)证明:MN∥平民啊ABCD;
(2)过点A作AQ⊥PC,垂足为点Q,求二面角A-MN-Q的平面角 的余弦值。
21.(本题满分15分)如图,椭圆 的离心率为 ,其左焦点到点P(2,1)的距离为 ,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分。
(Ⅰ)求椭圆C的方程;
(Ⅱ)求△APB面积取最大值时直线l的方程。
22.(本题满分14分)已知a>0,b∈R,函数f(x)=4ax2-2bx-a+b。
(Ⅰ)证明:当0 x 1时。
(1)函数f(x)的最大值为
(2)f(x)+ +a 0;
(Ⅱ)若-1 f(x) 1对x∈ 恒成立,求a+b的取值范围。
相关推荐
标签:高三数学试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。