编辑:sx_yangj2
2015-06-30
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理了2015高三数学数列,希望大家喜欢。高三数学章末综合测试题(9)数列一、选择题:本大题共12小题,每小题5分,共60分.1.在等差数列{an}中,若a1+a2+a12+a13=24,则a7为( )A.6 B.7 C.8 D.9解析:∵a1+a2+a12+a13=4a7=24,∴a7=6.答案:A2.若等差数列{an}的前n项和为Sn,且满足S33-S22=1,则数列{an}的公差是( )A.12 B.1 C.2 D.3解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代入S33-S22=1,得d=2,故选C.答案:C3.已知数列a1=1,a2=5,an+2=an+1-an(n∈N*),则a2 011等于( )A.1 B.-4 C.4 D.5解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,…故{an}是以6为周期的数列,∴a2 011=a6×335+1=a1=1.答案:A4.设{an}是等差数列,Sn是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是( )A.d<0 B.a7=0C.S9>S5 D.S6与S7均为Sn的最大值解析:∵S5<S6,∴a6>0.S6=S7,∴a7=0.又S7>S8,∴a8<0.假设S9>S5,则a6+a7+a8+a9>0,即2(a7+a8)>0.∵a7=0,a8<0,∴a7+a8<0.假设不成立,故S9<S5.∴C错误.答案:C5.设数列{an}是等比数列,其前n项和为Sn,若S3=3a3,则公比q的值为( )A.-12 B.12C.1或-12 D.-2或12[解析:设首项为a1,公比为q,则当q=1时,S3=3a1=3a3,适合题意.当q≠1时,a1(1-q3)1-q=3•a1q2,∴1-q3=3q2-3q3,即1+q+q2=3q2,2q2-q-1=0,解得q=1(舍去),或q=-12.综上,q=1,或q=-12.答案:C6.若数列{an}的通项公式an=5 •252n-2-4•25n-1,数列{an}的最大项为第x项,最小项为第y项,则x+y等于( )A.3 B.4 C.5 D.6解析:an=5•252n-2-4•25n-1=5•25n-1-252-45,∴n=2时,an最小;n=1时,an最大.此时x=1,y=2,∴x+y=3. 答案:A7.数列{an}中,a1 =15,3an+1= 3an-2(n∈N *),则该数列中相邻两项的乘积是负数的是( )A.a21a22 B.a22a23 C.a23a24 D.a24a25解析:∵3an+1=3an-2,∴an+1-an=-23,即公差d=-23.∴an=a1+(n-1)•d=15-23(n-1).令an>0,即15-23(n-1)>0,解得n<23.5.又n∈N*,∴n≤23,∴a23>0,而a24<0,∴a23a24<0.答案:C8.某工厂去年产值为a,计划今后5年内每年比上年产值增加10%,则从今年起到第5年,这个厂的总产值为( )A.1.14a B.1.15aC.11×(1.15-1)a D.10×(1.16-1)a解析:由已知,得每年产值构成等比数列a1=a,wan=a(1+10%)n-1(1≤n≤6).∴总产值为S6-a1=11×(1.15-1)a.答案:C9.已知正数组成的等差数列{an}的前20项的和为100,那么a7•a14的最大值为( )A.25 B.50 C.1 00 D.不存在解析:由S20=100,得a1+a20=10. ∴a7+a14=10. 又a7>0,a14>0,∴a7•a14≤a7+a1422=25.答案:A10.设数列{an}是首项为m,公比为q(q≠0)的等比数列,Sn是它的前n项和,对任意的n∈N*,点an,S2nSn( )A.在直线mx+qy-q=0上B.在直线qx-my+m=0上C.在直线qx+my-q=0上D.不一定在一条直线上解析:an=mqn-1=x, ①S2nSn=m(1-q2n)1-qm(1-qn)1-q=1+qn=y, ②由②得qn=y-1,代入①得x=mq(y-1), 即qx-my+m=0.答案:B11.将以2为首项的偶数数列,按下列方法分组:(2),(4,6),(8,10,12),…,第n组有n个数,则第n组的首项为( )A.n2-n B.n2+n+2C.n2+n D.n2-n+2解析:因为前n-1组占用了数列2,4,6,…的前1+2+3+…+(n-1)=(n-1)n2项,所以第n组的首项为数列2,4,6,…的第(n-1)n2+1项,等于2+(n-1)n2+1-1•2=n2-n+2.答案:D12.设m∈N*,log2m的整数部分用F(m)表示,则F(1)+F(2)+…+F(1 024)的值是( )A.8 204 B.8 192C.9 218 D.以上都不对解析:依题意,F(1)=0,F(2)=F(3)=1,有2 个F(4)=F(5)=F(6)=F(7)=2,有22个.F(8)=…=F(15)=3,有23个.F(16)=…=F(31)=4,有24个.…F(512)=…=F(1 023)=9,有29个.F(1 024)=10,有1个.故F(1)+F(2)+…+F(1 024)=0+1×2+2×22+3×23+…+9×29+10.令T=1×2+2×22+3×23+…+9×29,①则2T=1×22+2×23+…+8×29+9×210.②①-②,得-T=2+22+23+…+29-9×210 =2(1-29)1-2-9×210=210-2-9×210=-8×210-2,∴T=8×210+2=8 194, m]∴F(1)+F(2)+…+F(1 024)=8 194+10=8 204.答案:A第Ⅱ卷 (非选择 共90分)二、填空题:本大题共4个小题,每小题5分 ,共20分.13.若数列{an} 满足关系a1=2,an+1=3an+2,该数 列的通项公式为__________.解析:∵an+1=3an+2两边加上1得,an+1+1=3(an+1),∴{an+1}是以a1+1=3为首项,以3为公比的等比数列,∴an+1=3•3n-1=3n,∴an=3n-1.答案:an=3n-114.已知公差不为零的等差数列{an}中,M=anan+3,N=an+1an+2,则M与N的大小关系是__________.解析:设{an}的公差为d,则d≠0.M-N=an(an+3d)-[(an+d)(an+2d)]=an2+3dan-an2-3dan-2d2=-2d2<0,∴M<N.答案:M<N15.在数列{an}中,a1=6,且对任意大于1的正整数n,点(an,an-1)在直线x-y=6上,则数列{ann3(n+1)}的前n项和Sn=__________.解析:∵点(an,an-1)在直线x-y=6上,∴an-an-1=6,即数列{an}为等差数列.∴an=a1+6(n-1)=6+6(n-1)=6n,∴an=6n2.∴ann3(n+1)=6n2n3(n+1)=6n(n+1)=61n-1n+1∴Sn=61-12+12-13+…+1n-1n+1.=61-1n+1=6nn+1.答案:6nn+116.观察下表:12 3 43 4 5 6 74 5 6 7 8 9 10…则第__________行的各数之和等于2 0092.解析:设第n行的各数之和等于2 0092,则此行是一个首项a1=n,项数为2n-1,公差为1的等差数列.故S=n×(2n-1)+(2n-1)(2n-2)2=2 0092, 解得n=1 005.答案:1 005三、解答题:本大题共6小题,共70分.17.(10分)已知数列{an}中,a1=12,an+1=12an+1(n∈N*),令bn=an-2.(1)求证:{bn}是等比数列,并求bn;(2)求通项an并求{an}的前n项和Sn.解析:(1)∵bn+1bn=an+1-2an-2=12an+1-2an-2=12an-1an-2=12,∴{bn}是等比数列.∵b1=a1-2=-32,∴bn=b1qn-1=-32×12n-1=-32n.(2)an=bn+2=-32n+2,Sn=a1+a2+…+an=-32+2+-322+2+-323+2+…+-32n+2=-3×12+122+…+12n+2n=-3×12×1-12n1-12+2n=32n+2n-3.18.(12分)若数列{an}的前n项和Sn=2n.(1)求{an}的通项公式;(2)若数列{bn}满足b1=-1,bn+1=bn+(2n-1),且cn=an•bnn,求数列{cn}的通项公式及其前n项和Tn.解析:(1)由题意Sn=2n,得Sn-1=2n-1(n≥2),两式相减,得an=2n-2n-1=2n-1(n≥2).当n=1时,21-1=1≠S1=a1=2.∴an=2 (n=1),2n-1 (n≥2).(2)∵bn+1=bn+(2n-1),∴b2-b1=1,b3-b2=3,b4-b3=5,…bn-bn-1=2n-3.以上各式相加,得bn-b1=1+3+5+…+(2n-3)=(n-1)(1+2n-3)2=(n-1)2.∵b1=-1,∴bn=n2-2n,∴cn=-2 (n=1),(n-2)×2n-1 (n≥2),∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1,∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n.∴-Tn=2+22+23+…+2n-1-(n-2)×2n=2(1-2n-1)1-2-(n-2)×2n=2n-2-(n-2)×2n=-2-(n-3)×2n.∴Tn=2+(n-3)×2n.19.(12分)已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.(1)求数列{an}的通项公式;(2)若从数列{an}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成一个新数列{bn},记该数列的前n项和为Tn,求Tn的表达式.解析:(1)依题意,得3a1+3×22d+5a1+5×42d=50,(a1+3d)2=a1(a1+12d),解得a1=3,d=2.∴an=a1+(n-1)d=3+2(n-1)=2n+1,即an=2n+1.(2)由已知,得bn=a2n=2×2n+1=2n+1+1,∴Tn=b1+b2+…+bn=(22+1)+(23+1)+…+(2n+1+1)=4(1-2n)1-2+n=2n+2-4+n.20.(12分)设数列{an}的前n项和为Sn,且ban-2n=(b-1)Sn.(1)证明:当b=2时,{an-n•2n-1}是等比数列;(2)求通项an. 新 课 标 第 一 网解析:由题意知,a1=2,且ban-2n=(b-1)Sn,ban+1-2n+1=(b-1)Sn+1,两式相减,得b(an+1-an)-2n=(b-1)an+1,即an+1=ban+2n.①(1)当b=2时,由①知,an+1=2an+2n.于是an+1-(n+1)•2n=2an+2n-(n+1)•2n=2an-n•2n-1.又a1- 1•20=1≠0,∴{an-n•2n-1}是首项为1,公比为2的等比数列.(2)当b=2时,由(1)知,an-n•2n-1=2n-1,即an=(n+1)•2n-1当b≠2时,由①得an +1-12-b•2n+1=ban+2n-12-b•2n+1=ban-b2-b•2n=ban-12-b•2n,因此an+1-12-b•2n+1=ban-12-b•2n=2(1-b)2-b•bn.得an=2, n=1,12-b[2n+(2-2b)bn-1], n≥2.21.(12分)某地在抗洪抢险中接到预报,24小时后又一个超历史最高水位的洪峰到达,为保证万无一失,抗洪指挥部决定在24小时内另筑起一道堤作为第二道防线.经计算,如果有 20辆大型翻斗车同时作业25小时,可以筑起第二道防线,但是除了现有的一辆车可以立即投入作业外,其余车辆需从各处紧急抽调,每隔20分钟就有一辆车到达并投入工作.问指挥部至少还需组织多少辆车这样陆续工作,才能保证24小时内完成第二道防线,请说明理由.解析:设从现有这辆车投入工作算起,各车的工作时间依次组成数列{an},则an-an-1=-13.所以各车的工作时间构成首项为24,公差为-13的等差数列,由题知,24小时内最多可抽调72辆车.设还需组织(n-1)辆车,则a1+a2+…+an=24n+n(n-1)2×-13≥20×25.所以n2-145n+3 000≤0,解得25≤n≤120,且n≤73.所以nmin=25,n-1=24.故至少还需组织24辆车陆续工作,才能保证在24小时内完成第二道防线.22.(12分)已知点集L={(x,y)|y=m•n},其中m=(2x-2b,1),n=(1,1+2b),点列Pn(an,bn)在点集L中,P1为L的轨迹与y轴的交点,已知数列{an}为等差数列,且公差为1,n∈N*.(1)求数列{an},{bn}的通项公式; (3)设cn=5n•an•|PnPn+1|(n≥2),求c2+c3+c4+…+cn的值.解析:(1)由y=m•n,m=(2x-2b,1),n=(1,1+2b),得y=2x+1,即L:y=2x+1.∵P1为L的轨迹与y轴的交点,∴P1(0,1),则a1=0,b1=1.∵数列{an}为等差数列,且公差为1,∴an=n-1(n∈N*) .代入y=2x+1,得bn=2n-1(n∈N*).(2)∵Pn(n-1,2n-1),∴Pn+1(n,2n+1).=5n2-n-1=5n-1102-2120.∵n∈N*, (3)当n≥2时,Pn(n-1,2n-1),∴c2+c3+…+cn=1-12+12-13+…+1n-1-1n=1-1n.
以上就是为大家介绍的海南高考英语试卷,希望大家喜欢,也希望大家能够快乐学习。
相关推荐:
标签:高三数学试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。