编辑:sx_gaohm
2015-10-13
数学在人类历史发展和社会生活中发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。精品学习网为大家推荐了高三数学必修5第二章数列章末测试题,请大家仔细阅读,希望你喜欢。
一、选择题(本大题共12小题,每小题5分,共60分)
1.在等差数列{an}中,a3=2,则{an}的前5项和为( )
A.6 B.10
C.16 D.32
2.设Sn为等比数列{an}的前n项和,已知3S3=a4-2,3S2=a3-2,则公比q等于( )
A.3 B.4
C.5 D.6
3.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )
A.5 B.4 C.3 D.2
4.在等比数列{an}中,Tn表示前n项的积,若T5=1,则( )
A.a1=1 B.a3=1
C.a4=1 D.a5=1
5.等比数列{an}中,a1+a3=10,a4+a6=54,则数列{an}的通项公式为( )
A.an=24-n B.an=2n-4 C.an=2n-3 D.an=23-n
6.已知等比数列{an}的前n项和是Sn,S5=2,S10=6,则a16+a17+a18+a19+a20等于( )
A.8 B.12 C.16 D.24
7.在等差数列{an}中,若a4+a6+a8+a10+a12=120,则a10-12a12的值为( )
A.10 B.11 C.12 D.13
8.已知数列{an}为等比数列,Sn是它的前n项和,若a2•a3=2a1,且a4与2a7的等差中项为54,则S5等于( )
A.35 B.33 C.31 D.29
9.已知等差数列{an}中,Sn是它的前n项和.若S16>0,且S17<0,则当Sn最大时n的值为( )
A.8 B.9 C.10 D.16
10.已知方程(x2-mx+2)(x2-nx+2)=0的四个根组成一个首项为12的等比数列,则
|m-n|等于( )
A.1 B.32 C.52 D.92
11.将正偶数集合{2,4,6,…}从小到大按第n组有2n个偶数进行分组:{2,4},{6,8,10,12},{14,16,18,20,22,24},….则2 010位于第( )组.
A.30 B.31 C.32 D.33
12.a1,a2,a3,a4是各项不为零的等差数列且公差d≠0,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列,则a1d的值为( )
A.-4或1 B.1 C.4 D.4或-1
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案
二、填空题(本大题共4小题,每小题5分,共20分)
13.定义“等和数列”:在一个数列中,如果每一项与它后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且
a1=-1,公和为1,那么这个数列的前2 011项和S2 011=________.
14.等差数列{an}中,a10<0,且a11>|a10|,Sn为数列{an}的前n项和,则使Sn>0的n的最小值为__________.
15.某纯净水厂在净化过程中,每增加一次过滤可减少水中杂质的20%,要使水中杂质减少到原来的5%以下,则至少需过滤的次数为________.(lg 2≈0.301 0)
16.数列{an}的前n项和Sn=3n2-2n+1,则它的通项公式是________.
三、解答题(本大题共6小题,共70分)
17.(10分)数列{an}中,a1=13,前n项和Sn满足Sn+1-Sn=(13)n+1(n∈N*).
(1)求数列{an}的通项公式an以及前n项和Sn;
(2)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.
18.(12分)已知点(1,2)是函数f(x)=ax(a>0且a≠1)的图象上一点,数列{an}的前n项和Sn=f(n)-1.
(1)求数列{an}的通项公式;
(2)若bn=logaan+1,求数列{anbn}的前n项和Tn.
19.(12分)设Sn是等差数列{an}的前n项和,已知13S3,14S4的等比中项为15S5;13S3,14S4的等差中项为1,求数列{an}的通项公式.
20.(12分)设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1).
(1)求数列{an}的通项公式an;
(2)设数列{1anan+1}的前n项和为Tn,求证:15≤Tn<14.
21.(12分)设等差数列{an}的前n项和为Sn,公比是正数的等比数列{bn}的前n项和为Tn,已知a1=1,b1=3,a2+b2=8,T3-S3=15.
(1)求{an},{bn}的通项公式;
(2)若数列{cn}满足a1cn+a2cn-1+…+an-1c2+anc1=2n+1-n-2对任意n∈N*都成立,求证:数列{cn}是等比数列.
22.(12分)甲、乙两大超市同时开业,第一年的全年销售额为a万元,由于经营方式不同,甲超市前n年的总销售额为a2(n2-n+2)万元,乙超市第n年的销售额比前一年销售额多a23n-1万元.
(1)求甲、乙两超市第n年销售额的表达式;
(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年?
标签:高三数学试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。