您当前所在位置:首页 > 高中 > 高一 > 高一数学 > 高一数学寒假作业

高一数学寒假作业:奇偶性训练题六

编辑:sx_zhangh

2014-01-28

为了帮助学生们更好地学习高一数学,精品学习网精心为大家搜集整理了“高一数学寒假作业:奇偶性训练题六”,希望对大家的学习有所帮助!

高一数学寒假作业:奇偶性训练题六

10.判断下列函数的奇偶性:

(1)f(x)=(x-1) 1+x1-x;(2)f(x)=x2+x  x<0-x2+x x>0.

解:(1)由1+x1-x≥0,得定义域为[-1,1),关于原点不对称,∴f(x)为非奇非偶函数.

(2)当x<0时,-x>0,则f(-x)=-(-x)2-x=-(-x2+x)=-f(x),

当x>0时,-x<0,则f(-x)=(-x)2-x=-(-x2+x)=-f(x),

综上所述,对任意的x∈(-∞,0)∪(0,+∞),都有f(-x)=-f(x),

∴f(x)为奇函数.

11.判断函数f(x)=1-x2|x+2|-2的奇偶性.

解:由1-x2≥0得-1≤x≤1.

由|x+2|-2≠0得x≠0且x≠-4.

∴定义域为[-1,0)∪(0,1],关于原点对称.

∵x∈[-1,0)∪(0,1]时,x+2>0,

∴f(x)=1-x2|x+2|-2=1-x2x,

∴f(-x)=1--x2-x=-1-x2x=-f(x),

∴f(x)=1-x2|x+2|-2是奇函数.

12.若函数f(x)的定义域是R,且对任意x,y∈R,都有f(x+y)=f(x)+f(y)成立.试判断f(x)的奇偶性.

解:在f(x+y)=f(x)+f(y)中,令x=y=0,

得f(0+0)=f(0)+f(0),

∴f(0)=0.

再令y=-x,则f(x-x)=f(x)+f(-x),

即f(x)+f(-x)=0,

∴f(-x)=-f(x),故f(x)为奇函数.

经过精心的整理,有关“高一数学寒假作业:奇偶性训练题六”的内容已经呈现给大家,祝大家学习愉快!

相关推荐:

高一数学必修2寒假作业测试题

高一上学期数学寒假作业基础题部分

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。