您当前所在位置:首页 > 高中 > 高一 > 高一数学 > 高一数学寒假作业

高一年级数学学科寒假作业精选

编辑:sx_gaohm

2015-12-24

第一次工业革命,人类发明了蒸汽机,没有数学又哪里会有现在先进的汽车自动化生产线。精品小编准备了高一年级数学学科寒假作业,具体请看以下内容。

一、选择题

1.若直线l的倾斜角为120°,则这条直线的斜率为(  )

A.3   B.-3

C.33   D.-33

【解析】 k=tan 120°=-3.

【答案】 B

2.(2013•泉州高一检测)过点M(-2,a),N(a,4)的直线的斜率为-12,则a等于(  )

A.-8 B.10

C.2 D.4

【解析】 ∵k=4-aa+2=-12,∴a=10.

【答案】 B

3.若A(-2,3),B(3,-2),C(12,m)三点在同一条直线上,则m的值为(  )

A.-2 B.2

C.-12 D.12

【解析】 ∵A,B,C三点在同一条直线上,

∴kAB=kAC,

即-2-33--2=m-312--2,

解得m=12.

【答案】 D

4.直线l过原点,且不过第三象限,则l的倾斜角α的取值集合是(  )

A.{α|0°≤α<180°}

B.{α|90°≤α<180°}

C.{α|90°≤α<180°或α=0°}

D.{α|90°≤α≤135°}

【解析】 不过第三象限,说明倾斜角不能取0°<α<90°,即可取0°或90°≤α<180°.

【答案】 C

5.(2013•西安高一检测)将直线l向右平移4个单位,再向下平移5个单位后仍回到原来的位置,则此直线的斜率为(  )

A.54 B.45

C.-54 D.-45

【解析】 设点P(a,b)是直线l上的任意一点,当直线l按题中要求平移后,点P也做同样的平移,平移后的坐标为(a+4,b-5),由题意知这两点都在直线l上,∴直线l的斜率为k=b-5-ba+4-a=-54.w

【答案】 C

二、填空题

6.直线l经过A(2,1),B(1,m2)两点,(m∈R).那么直线l的倾斜角的取值范围为________.

【解析】 k=m2-11-2=1-m2≤1,∴倾斜角0°≤α≤45°或90°<α<180°.

【答案】 0°≤α≤45°或90°<α<180°

7.已知三点A(2,-3),B(4,3),C(5,k2)在同一直线上,则k=________.

【解析】 kAB=3--34-2=3,kBC=k2-35-4=k2-3.

∵A、B、C在同一直线上,

∴kAB=kBC,即3=k2-3,解得k=12.

【答案】 12

8.若三点A(2,2),B(a,0),C(0,b)(ab≠0)共线,则1a+1b的值等于________.

【解析】 ∵A、B、C三点共线,∴0-2a-2=b-20-2,

∴4=(a-2)(b-2),

∴ab-2(a+b)=0,∵ab≠0,

∴1-2(1a+1b)=0,∴1a+1b=12.

【答案】 12

三、解答题

9.求经过下列两点的直线的斜率,并判断其倾斜角是锐角还是钝角.

(1)A(0,-1),B(2,0);

(2)P(5,-4),Q(2,3);

(3)M(3,-4),N(3,-2).

【解】 (1)kAB=-1-00-2=12,

∵kAB>0,∴直线AB的倾斜角是锐角.

(2)kPQ=-4-35-2=-73.

∵kPQ<0,∴直线PQ的倾斜角是钝角.

(3)∵xM=xN=3.

∴直线MN的斜率不存在,其倾斜角为90°.

10.(2013•郑州高一检测)已知直线l的倾斜角为α,且tan α=±1,点P1(2,y1)、P2(x2,-3)、P3(4,2)均在直线l上,求y1、x2的值.

【解】 当tan α=1时,-3-2x2-4=1,

∴x2=-1,y1-22-4=1,∴y1=0.

当tan α=-1时,-3-2x2-4=-1,

∴x2=9,

y1-22-4=-1,∴y1=4.

11.已知点P(x,y)在以点A(1,1),B(3,1),C(-1,6)为顶点的三角形内部及边界上运动,求kOP(O为坐标原点)的取值范围.

【解】 如图所示,设直线OB、OC的倾斜角分别为α1、α2,斜率分别为k1、k2,则直线OP的倾斜角α满足α1≤α≤α2.

又∵α2>90°,

∴直线OP的斜率kOP满足kOP≥k1或kOP≤k2.

又k1=13,k2=-6,

∴kOP≥13或kOP≤-6.

高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高一年级数学学科寒假作业,希望大家喜欢。

相关推荐:

2015届高一数学寒假作业及答案

高一数学寒假作业参考答案2015

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。