您当前所在位置:首页 > 高中 > 高一 > 高一数学 > 高一数学教案

高一数学教案:函数单调性

编辑:sx_xingt

2013-04-07

【摘要】欢迎来到精品学习网高一数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。因此小编在此为您编辑了此文:“高一数学教案:函数单调性”希望能为您的提供到帮助。

本文题目:高一数学教案:函数单调性

总 课 题 函数概念与基本初等函数 分课时 第5、6课时 总课时 总第16、17课时

分 课 题 函数单调性(1) 课 型 新 授 课

教学目标 会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。

重  点 函数单调性的证明及判断。

难  点 函数单调性证明及其应用。

一、复习引入

1、函数的定义域、值域、图象、表示方法

2、函数单调性

(1)单调增函数

(2)单调减函数

(3)单调区间

二、例题分析

例1、画出下列函数图象,并写出单调区间:

(1) (2) (2)

例2、求证:函数 在区间 上是单调增函数。

例3、讨论函数 的单调性,并证明你的结论。

变(1)讨论函数 的单调性,并证明你的结论

变(2)讨论函数 的单调性,并证明你的结论。

例4、试判断函数 在 上的单调性。

三、随堂练习

1、判断下列说法正确的是 。

(1)若定义在 上的函数 满足 ,则函数 是 上的单调增函数;

(2)若定义在 上的函数 满足 ,则函数 在 上不是单调减函数;

(3)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数;

(4)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数。

2、若一次函数 在 上是单调减函数,则点 在直角坐标平面的( )

A.上半平面 B.下半平面 C.左半平面 D.右半平面

3、函数 在 上是___ ___;函数 在 上是__ _____。

3.下图分别为函数 和 的图象,求函数 和 的单调增区间。

4、求证:函数 是定义域上的单调减函数。

四、回顾小结

1、函数单调性的判断及证明。

课后作业

班级:高一( )班 姓名__________

一、基础题

1、求下列函数的单调区间

(1) (2)

2、画函数 的图象,并写出单调区间。

二、提高题

3、求证:函数 在 上是单调增函数。

4、若函数 ,求函数 的单调区间。

5、若函数 在 上是增函数,在 上是减函数,试比较 与 的大小。

三、能力题

6、已知函数 ,试讨论函数f(x)在区间 上的单调性。

变(1)已知函数 ,试讨论函数f(x)在区间 上的单调性。

探究:函数 的单调性。

【总结】2013年精品学习网为小编在此为您收集了此文章“高一数学教案:函数单调性”,今后还会发布更多更好的文章希望对大家有所帮助,祝您在精品学习网学习愉快!

更多精彩内容请点击:高中 > 高一 > 高一数学 > 高一数学教案

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。