您当前所在位置:首页 > 高中 > 高一 > 高一数学 > 高一数学教案

高一数学教案:直线的两点式方程教案

编辑:sx_xingt

2013-04-07

【摘要】欢迎来到精品学习网高一数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。因此小编在此为您编辑了此文:“高一数学教案:直线的两点式方程教案”希望能为您的提供到帮助。

本文题目:高一数学教案:直线的两点式方程教案

一、教学目标

1、知识与技能:(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。

2、过程与方法:让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。

3、情态与价值观:(1)认识事物之间的普遍联系与相互转化;(2)培养学生用联系的观点看问题。

二、教学重点、难点

1、 重点:直线方程两点式。2、难点:两点式推导过程的理解。

三、教学方法:启发、引导、讨论.

四、教学过程

问 题 设计意图 师生活动

1、利用点斜式解答如下问题:

(1)已知直线 经过两点 ,求直线 的方程.

(2)已知两点 其中 ,求通过这两点的直线方程。 遵循由浅及深,由特殊到一般的认知规律。使学生在已有的知识基础上获得新结论,达到温故知新的目的。 教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程:

(1)

(2)

教师指出:当 时,方程可以写成

由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式(two-point form).

2、若点 中有 ,或 ,此时这两点的直线方程是什么? 使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式。 教师引导学生通过画图、观察和分析,发现当 时,直线与 轴垂直,所以直线方程为: ;当 时,直线与 轴垂直,直线方程为: 。

问 题 设计意图 师生活动

3、例3 教学

已知直线 与 轴的交点为A ,与 轴的交点为B ,其中 ,求直线 的方程。

使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形。 教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线 的方程?那种方法更为简捷?然后由求出直线方程:

教师指出: 的几何意义和截距式方程的概念。

4、例4教学

已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),求BC边所在直线的方程,以及该边上中线所在直线的方程。 让学生学会根据题目中所给的条件,选择恰当的直线方程解决问题。 教师给出中点坐标公式,学生根据自己的理解,选择恰当方法求出边BC所在的直线方程和该边上中线所在直线方程。在此基础上,学生交流各自的作法,并进行比较。

5、课堂练习

第102页第1、2、3题。 学生独立完成,教师检查、反馈。

6、小结 增强学生对直线方种四种形式(点斜式、斜截式、两点式、截距式)互相之间的联系的理解。 教师提出:(1)到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?

(2)要求一条直线的方程,必须知道多少个条件?

7、布置作业 巩固深化,培养学生的独立解决问题的能力。 学生课后完成

【总结】2013年精品学习网为小编在此为您收集了此文章“高一数学教案:直线的两点式方程教案”,今后还会发布更多更好的文章希望对大家有所帮助,祝您在精品学习网学习愉快!

更多精彩内容请点击:高中 > 高一 > 高一数学 > 高一数学教案

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。