您当前所在位置:首页 > 高中 > 高一 > 高一数学 > 高一数学暑假作业

高一数学暑假作业:第一章集合与函数概念(答案)

编辑:sx_yangj2

2015-07-03

同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,下文整理了这篇高一数学暑假作业,希望可以帮助到大家!

1.1集合

1 1 1集合的含义与表示

1.D.2.A.3.C.4.{1,-1}.5.{x|x=3n+1,n∈N}.6.{2,0,-2}.

7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6.

10.列举法表示为{(-1,1),(2,4)},描述法的表示方法不唯一,如可表示为(x,y)|y=x+2,

y=x2.

11.-1,12,2.

1 1 2集合间的基本关系

1.D.2.A.3.D.4. ,{-1},{1},{-1,1}.5. .6.①③⑤.

7.A=B.8.15,13.9.a≥4.10.A={ ,{1},{2},{1,2}},B∈A.

11.a=b=1.

1 1 3集合的基本运算(一)

1.C.2.A.3.C.4.4.5.{x|-2≤x≤1}.6.4.7.{-3}.

8.A∪B={x|x<3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1.

11.{a|a=3,或-22

1 1 3集合的基本运算(二)

1.A.2.C.3.B.4.{x|x≥2,或x≤1}.5.2或8.6.x|x=n+12,n∈Z.

7.{-2}.8.{x|x>6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}.

10.A,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3,4}.

11.a=4,b=2.提示:∵A∩ 綂 UB={2},∴2∈A,∴4+2a-12=0 a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩ 綂 UB={2},∴-6 綂 UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0 b=2,或b=4.①当b=2时,B={x|x2+2x-24=0}={-6,4},∴-6 綂 UB,而2∈ 綂 UB,满足条件A∩ 綂 UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2},

∴2 綂 UB,与条件A∩ 綂 UB={2}矛盾.

1.2函数及其表示

1 2 1函数的概念(一)

1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).

7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1.

10.(1)略.(2)72.11.-12,234.

1 2 1函数的概念(二)

1.C.2.A.3.D.4.{x∈R|x≠0,且x≠-1}.5.[0,+∞).6.0.

7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).

9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).

1 2 2函数的表示法(一)

1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略.

8.

x1234y828589889.略.10.1.11.c=-3.

1 2 2函数的表示法(二)

1.C.2.D.3.B.4.1.5.3.6.6.7.略.

8.f(x)=2x(-1≤x<0),

-2x+2(0≤x≤1).

9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2,

a+b=0,解得a=1,b=-1.

10.y=1.2(0

2.4(20

3.6(40

4.8(60

1.3函数的基本性质

1 3 1单调性与最大(小)值(一)

1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k<12.

7.略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.10.a≥-1.

11.设-10,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)>0,∴函数y=f(x)在(-1,1)上为减函数.

1 3 1单调性与最大(小)值(二)

1.D.2.B.3.B.4.-5,5.5.25.

6.y=316(a+3x)(a-x)(0

11.日均利润最大,则总利润就最大.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x>12.且日均销售量应为440-(x-13)·40>0,即x<23,总利润y=(x-12)[440-(x-13)·40]-600(12

1 3 2奇偶性

1.D.2.D.3.C.4.0.5.0.6.答案不唯一,如y=x2.

7.(1)奇函数.(2)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数.

8.f(x)=x(1+3x)(x≥0),

x(1-3x)(x<0).9.略.

10.当a=0时,f(x)是偶函数;当a≠0时,既不是奇函数,又不是偶函数.

11.a=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2 a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)<3,∴4(2b-1)+12b<3 2b-32b<0 0

单元练习

1.C.2.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A.

10.D.11.{0,1,2}.12.-32.13.a=-1,b=3.14.[1,3)∪(3,5].

15.f12

17.T(h)=19-6h(0≤h≤11),

-47(h>11).18.{x|0≤x≤1}.

19.f(x)=x只有唯一的实数解,即xax+b=x(*)只有唯一实数解,当ax2+(b-1)x=0有相等的实数根x0,且ax0+b≠0时,解得f(x)=2xx+2,当ax2+(b-1)x=0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)=1.

20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以该函数是偶函数.(2)略.(3)单调递增区间是[-1,0],[1,+∞),单调递减区间是(-∞,-1],[0,1].

21.(1)f(4)=4×1 3=5.2,f(5.5)=5×1.3+0.5×3.9=8.45,f(6.5)=5×1.3+1×3.9+0.5×6 5=13.65.

(2)f(x)=1.3x(0≤x≤5),

3.9x-13(5

6.5x-28.6(6

22.(1)值域为[22,+∞).(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1f(x2)成立,即(x1-x2)2+ax1x2>0,只要a<-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a<-2,即a的取值范围是(-∞,-2).

以上就是为大家介绍的高一数学暑假作业,希望大家喜欢,也希望大家能够快乐学习。

相关推荐:

最新高一数学暑假作业测试题  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。