您当前所在位置:首页 > 高中 > 高一 > 高一数学 > 高一数学学习方法

高一数学学习:判断充分与必要条件的方法二

编辑:sx_zhangh

2014-02-14

为了帮助学生们更好地学习高中数学,精品学习网精心为大家搜集整理了“高一数学学习:判断充分与必要条件的方法二”,希望对大家的数学学习有所帮助!

高一数学学习:判断充分与必要条件的方法二

二、 集合法

如果将命题p,q分别看作两个集合A与B,用集合意识解释条件,则有:①若A?哿B,则x∈A是x∈B的充分条件,x∈B是x∈A的必要条件;②若A?芴B,则x∈A是x∈B的充分不必要条件,x∈B是x∈A的必要不充分条件;③若A=B,则x∈A和x∈B互为充要条件;④若A?芫B且A? 芸B,则x∈A和x∈B互为既不充分也不必要条件.

例2 设x,y∈R,则x2+y2<2是|x|+|y|≤的()条件,是|x|+|y|<2的()条件.

A. 充要条件 B. 既非充分也非必要条件

C. 必要不充分条件?摇D. 充分不必要条件

解 如右图所示,平面区域P={(x,y)|x2+y2<2}表示圆内部分(不含边界);平面区域Q={(x,y)||x|+|y|≤}表示小正方形内部分(含边界);平面区域M={(x,y)||x|+|y|<2}表示大正方形内部分(不含边界).

由于(,0)?埸P,但(,0)∈Q,则P?芸Q.又P?芫Q,于是x2+y2<2是|x|+|y|≤的既非充分也非必要条件,故选B.

同理P?芴M,于是x2+y2<2是|x|+|y|<2的充分不必要条件,故选D.

点评 由数想形,以形辅数,这种解法正是数形结合思想在解题中的有力体现.数形结合不仅能够拓宽我们的解题思路,而且也能够提高我们的解题能力.

经过精心的整理,有关“高一数学学习:判断充分与必要条件的方法二”的内容已经呈现给大家,祝大家学习愉快!

相关推荐:

高一数学学法:新生预习高一数学三大策略一

高一数学学法:新生预习高一数学三大策略二

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。