编辑:
2014-06-12
我们想像平面上有条射线,射线的一端是原点,然后在上面我们每隔一厘米画一个点,并在每个点旁边标上1、2、3……等,这样就有无穷个点。那么这个点集和自然数集合比较大小的结果应该如何?按照我们前面的要求,任何两个集合都应该可以比较大小的。我们很容易想像到,这其实是一条数轴的正半轴,上面的点就是代表自然数的那些点,所以这些点的个数应该和自然数的个数相同。而且,按照“整体大于部分”的规定,那些标有10、20、30……的点的集合比所有点的集合要小。但是“一厘米”实在是非常人为的规定,如果我们一开始就每隔一分米画一个点,顺着上面的思路,这些点的个数也该和自然数一样多,但是这恰好是按一厘米间隔画点时标有10、20、30……的点啊!那些点始终是一样的,所以它们的个数不应该取决于在它们的旁边标记的是“1、2、3……”还是“10、20、30……”。
再举一个例子。假设我给你一个大口袋,里面有无限多个小口袋,上面按照自然数标了号1、2、3……。在1号口袋中有1粒豆子,2号口袋中有2粒豆子,……依次类推。现在我当着你的面拿掉1号小口袋,那么剩下的小口袋数和原来的相比如何?如果按照“整体大于部分”的观点,应该是少了,少一条。但是如果我当初就背着你拿掉1号口袋,然后从其他每个小口袋中取出一粒豆子,再把小口袋上的号码改掉,2改成1,3改成2……,然后再把大口袋给你,你显然不会知道我做了手脚,因为这时大口袋里的东西和原来没有任何区别,所以小口袋的数量和原来一样多。这就和“少一条”矛盾了,从小口袋里拿一粒豆子或者是涂改上面的标号不应该改变口袋的数量。大家明白我是打了一个比方,大口袋就是一个集合。按照上面的要求,集合的大小只应该取决于集合本身,而不应该取决于集合的表示方法或构造方法,也就是得到集合的过程。你拿到了大口袋,也就是就应该知道里面小口袋的数量,而不用知道我是否做过手脚。
这样的例子可以举很多。我们发现,如果坚持“整体大于部分”的话,固然可以使得某些集合和自己的子集相比较时,比如比较自然数和正偶数的个数时,符合“直观”和“常识”。但是更多的非常直观的东西和常识却都会变成错误的。比如说,x'=x+1这样一个数轴上的坐标平移,会将坐标上的点集{1,2,3……}变为{2,3,4……},一个坐标平移居然可以变动点集中元素的个数!“元素可以一一对应的两个集合大小相同”这条原理的失效,会使得我们在比较两个元素很不相同的集合时无所适从:怎样不使用一一对应的方法来比较自然数和数轴上(0,1)区间中点的个数?
在上面的两个例子中我们会有这样的感觉,对于无限集合来说,从部分中似乎可以“产生”出整体来。比如射线上的每隔一厘米画一个点的例子,如果我们把不是10的倍数的点去掉,然后将平面“收缩”到原来尺度的十分之一,我们就重新得到了原来的那个点集。在装豆子的口袋的例子中,只要从去掉1号口袋后剩下的那些袋子中拿去一粒豆子,我们就又得到了原来的那个大口袋。这暗示了无限集合的一个重要特点:从某种意义上来说,它和自己的一部分相似。事实上,无限集合的一个定义就是“能和自己的一部分一一对应的集合”。所以在无限集合大小的比较中,违反了“整体大于部分”的原则并不奇怪,因为这恰好就是无限集合的特征。
如果使用一一对应的比较方法,我们发现它满足所有第二节中提出的关于集合大小定义的要求。而且除了“整体大于部分”这个我们已经解释过的不适用的原则外,不违反其他的直觉和常识。事实上用一一对应的方法来比较两个集合的大小,也是非常符合直观的。如果有两盒火柴,我们想比较哪盒中的火柴数量更多,我们大可不必去数出每盒中火柴的数量,那样很容易出错。其实只要从不断地从两盒火柴中拿掉相同数量的火柴,最后如果同时两盒都不剩下火柴,那么就说明数量一样多,否则就是还剩有火柴的那盒比较多。
而更重要的是,这样的定义非常有用。康托尔在提出他关于集合的基数理论后,非常简洁地证明了“几乎所有实数都是超越数”,而那个时候数学家连一个超越数的实例都还没有找到!引起第三次数学革命的罗素悖论也是从基数理论中产生出来的。虽然集合的基数理论现在已经为一般的数学系学生和许多数学爱好者所熟悉,数学家们还是能从中找到非常有趣和深奥的课题,比如说“超大集合理论”,这是关于一些基数大得匪夷所思的集合的理论。我们知道对于任何一个集合A,它的幂集P(A)(也就是它所有子集构成的集合)一定比它本身大,所以我们可以构造一系列的集合A,P(A),P(P(A))……一个比一个大,所以没有最大的集合。而“超大集合理论”声称,存在一个集合B,比前面这一系列集合中的每个都要大!
所以说,使用一一对应原则来定义集合大小,是数学家迫不得已和最佳的选择。
直觉的合理性和数学结构
在文章的最前面我们提到过,从直觉上说来,自然数的个数应该是正偶数的两倍,这里难道没有一点合理的因素在内吗?有时我们会听到数学家说:“几乎所有的自然数都不是素数。
”如果按照一一对应的原则,素数和自然数是一样多的(第一个素数2对应1,第二个素数3对应2,第三个素数5对应3,……第n个素数对应n,……),这不矛盾吗?
数学并不依赖于直觉,但是尊重直觉,直觉中常常包含着合理的因素。受过数学训练的人对数学的直觉一般来说要比其他人更有合理性,数学大师能够用直觉把握住很深刻的数学理论,他们有时会说:“虽然我还没有一个严格证明,但是我知道它是对的。”数学大师的直觉当然不是每个人能模仿的,但是我们的确可以改变对一些数学物体的想像方法,来改善自己的直觉,使得它更有合理性。
当我们谈到集合的大小,这里所谈论的集合应该是没有附加的数学结构的。当所比较的集合都是自然数的子集时,直觉往往会偷偷地把自然数的数学结构加在上面。什么是数学结构?让我们先从最一般的集合说起。当我们谈论集合时,我们只应该把它看做一个装着元素的大袋子,里面的元素之间没有任何联系,比如说自然数集合,我们应该想像那是一个装了标了号的球(或者其他什么)的大袋子,球和球之间并没有什么联系,10并不一定非得在100的前面出现,如果你把口袋使劲抖抖,里面的球有些翻上来有些被压到底下去,但这并不改变这个集合——这仍然是自然数集合。
所谓的结构,就是在元素间增加联系,使得它们不能随便乱动。建筑工地上搭的脚手架就是一种结构,上面的钢管啊铁丝啊木板啊都不是随随便便堆在一起的,而是按照一定的方式联系在一起。修建完了一幢大楼后,工人们会把它们都拆下来再拿到另一个工地上去安装使用,虽然构成脚手架的元素——钢管铁丝木板还是原来的那些,但是脚手架却完全是另一个了,变化了的其实是结构。
数学结构也一样。比如说上面我们讲的序关系,就是元素之间的一种联系。我们可以很方便地验证自然数的大小满足我们前面所说的偏序关系的三个条件,而且每两个自然数之间都可以比较大小,所以在自然数集合上有一个全序关系,这个关系就给了自然数集合一个结构,就叫序结构。你可以把拥有全序结构的自然数集合仍旧想像成上面那个装了球的袋子,只是这时候那些球已经被从小到大串成了一串,不能随便乱跑了。平时我们想像自然数集合,可能会把它想成数轴上离原点越来越远的一串点,或者1、2、3、……这样从小到大的一列数,不知不觉地,我们已经把序结构想像进去了。当我们感到“正偶数的个数应该是自然数个数的一半,因为每隔一个数就有一个是偶数”,我们是在想像那条串成一串的球,偶数球得老老实实地和奇数球一个隔一个地串在一起,而不是杂乱无章放在袋里,后面这种情况是谈不上“每隔一个”的。
标签:高一数学知识点
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。