编辑:sx_yangk
2017-11-14
高中最重要的阶段,大家一定要把握好高中,多做题,多练习,为高考奋战,小编为大家整理了数学高一必修知识点,希望对大家有帮助。
余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
判定定理
判定定理一(两根判别法)若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取减号的值。①若m(c1,c2)=2,则有两解;②若m(c1,c2)=1,则有一解;③若m(c1,c2)=0,则有零解(即无解)。
注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。判定定理二(角边判别法)
一、当a>bsinA时:①当b>a且cosA>0(即A为锐角)时,则有两解;②当b>a且cosA<=0(即A为直角或钝角)时,则有零解(即无解);③当b=a且cosA>0(即A为锐角)时,则有一解;④当b=a且cosA<=0(即A为直角或钝角)时,则有零解(即无解);⑤当b0(即A为锐角)时,则有一解;
二、当a=bsinA时:①当cosA>0(即A为锐角)时,则有一解;②当cosA<=0(即A为直角或钝角)时,则有零解(即无解)。
标签:高一数学知识点
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。