您当前所在位置:首页 > 高中 > 高一 > 高一数学 > 高一数学知识点

新人教版高一上册数学函数模型及其应用知识点

编辑:sx_liax

2016-10-20

常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。接下来我们大家一起了解高一上册数学函数模型及其应用知识点

新人教版高一上册数学函数模型及其应用知识点

1.抽象概括:研究实际问题中量,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;

2.建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数 的解析式;

3.求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解.

这些步骤用框图表示是:

例1.如图所示,在矩形ABCD中,已知AB=a,BC=b(b<a),在ab,ad,cd,cb上分别截取ae,ah,cg,cf都等于x,当x为何值时,四边形efgh的面积最大?并求出最大面积.?< p="">

解:设四边形EFGH的面积为S,?

则S△AEH=S△CFG= x2,

S△BEF=S△DGH= (a-x)(b-x),?

∴S=ab-2[ 2+ (a-x)(b-x)]?

=-2x2+(a+b)x=-2(x- 2+ ?

由图形知函数的定义域为{x|0<x≤b}.?< p="">

又0<b<a,∴0<b< p="" ≤b,即a≤3b时,?<="">

则当x= 时,S有最大值 ;?

若 >b,即a>3b时,?

S(x)在(0,b]上是增函数,?

此时当x=b时,S有最大值为?

-2(b- )2+ =ab-b2,?

综上可知,当a≤3b时,x= 时,?

四边形面积Smax= ,?

当a>3b时,x=b时,四边形面积Smax=ab-b2.?

变式训练1:某商人将进货单价为8元的某种商品按10元一个销售时,每天可卖出100个,现在他采用提高售价,减少进货量的办法增加利润,已知这种商品销售单价每涨1元,销售量就减少10个,问他将售价每个定为多少元时,才能使 每天所赚的利润最大?并求出最大值.

解:设每个提价为x元(x≥0),利润为y元,每天销售总额为(10+x)(100-10x)元,

进货总额为8(100-10x)元,?

显然100-10x>0,即x<10,?

则y=(10+x)(100-10x)-8(100-10x)=(2+x)(100-10x)=-10(x-4)2+360(0≤x<10).?

当x=4时,y取得最大值,此时销售单价应为14元,最大利润为360元.?

例2.据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度

v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴

的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).(1)当t=4时,求s的值;?

(2)将s随t变化的规律用数学关系式表示出来;?

(3)若N城位于M地正南方向,且距M地650km,试判断这

场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将

侵袭到N城?如果不会,请说明理由.?

解:(1)由图象可知:

当t=4时,v=3×4=12,?

∴s= ×4×12=24.?

(2)当0≤t≤10时,s= •t•3t= t2,?

当10

当20

综上可知s=

(3)∵t∈[0,10]时,smax= ×102=150<650.?

t∈(10,20]时,smax=30×20-150=450<650.?

∴当t∈(20,35]时,令-t2+70t-550=650.?

解得t1=30,t2=40,∵20<t≤35,?< p="">

∴t=30,所以沙尘暴发生30h后将侵袭到N城.?

变式训练2:某工厂生产一种机器的固定成本(即固定投入)为0.5万元,但每生产100台 ,

需要加可变成本(即另增加投入)0.25万元.市场对此产品的年需求量为500台,销售的收入函 数为R(x)=5x- (万元)(0≤x≤5),其中x是产品售出的数量(单位:百台).

(1)把利润表示为年产量的函数;?

(2)年产量是多少时,工厂所得利润最大??

(3)年产量是多少时,工厂才不亏本??

解:(1)当x≤5时,产品能售出x百台;?

当x>5时,只能售出5 百台,?

故利润函数为L(x)=R(x)-C(x)?

=

(2)当0≤x≤5时,L(x)=4.75x- -0.5,?

当x=4.75时,L(x)max=10.78125万元.?

当x>5时,L(x)=12-0.25x为减函数,?

此时L(x)<10.75(万元).∴生产475台时利润最大.?

(3)由

得x≥4.75- =0.1(百台)或x<48(百台).?

∴产品年产量在10台至4800台时,工厂不亏本.?

精品学习网为大家推荐的高一上册数学函数模型及其应用知识点,大家一定要仔细阅读哦,祝大家学习进步。

相关推荐:

2016新人教版高一数学函数与方程知识点  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。