编辑:sx_haody
2016-12-28
苏教版高一数学上册第二单元包含6个课题,函数的概念和图像、指数函数、对数函数、幂函数、函数与方程、函数的模型及其应用,为了帮助大家学习这些知识点,小编特整理了苏教版高一数学上册第二单元知识点汇总!
函数的概念和图像
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
指数函数
一般地,形如y=a^x(a>0且a≠1) (x∈R)的函数叫做指数函数(exponential function) 。也就是说以指数为自变量,底数为大于0且不等于1的常量的函数称为指数函数,它是初等函数中的一种。
对数函数
对数的定义:一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
幂函数
一般地,形如y=xα(α为实数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x y=x0时x≠0)等都是幂函数。当α取非零的有理数时是比较容易理解的,而对于α取无理数时,初学者则不大容易理解了。因此,在初等函数里,我们不要求掌握指数为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续性的极为深刻的知识。
函数与方程
含有未知函数的等式叫做函数方程,能使函数方程成立的函数叫做函数方程的解,求函数方程的解或证明函数方程无解的过程叫解函数方程。 函数方程的解法有 代换法(或换元法)、 待定系数法 、迭代法、 柯西法。
函数的模型及其应用
常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。
苏教版高一数学上册第二单元知识点就整理到这里了,相信能帮助大家学习本单元的知识点!
相关推荐:
标签:高一数学知识点
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。