编辑:sx_zhangh
2014-02-02
精品学习网为大家提供“高中趣味数学:一个数能否被7整除”一文,供大家参考使用:
高中趣味数学:一个数能否被7整除
在小学,我们已学过怎样判断一个数能否被“3”整除。但如果要问“怎样判断一个数能否被‘7’整除”时,恐怕就不知从何入手了吧!
我们可以用代数知识进行探讨:
设数A=10x+y(x为大于0的整数,y=0,1,2,3,4,......,9).
则A=10x+y=10x-20y+21y=10(x-2y)+7×3y.
观察上式便知,如果任何一个正整数A(即10x+y)能被7整除,那么x-2y也必须被7整除。
例如3199能被7整除吗?
由上面得出的结论可知,3199这个数中x=319,y=9,x-2y=319-2×9=301.
要判断3199能否被7整除,只要看301能否被7整除便可以了。但301这个数较大,一时看不出来,所以用301作为一个新数,此时x-2y=30-2×1=28。而28一看便知能被7整除,所以301能被7整除,进而3199也能被7整除。
由此看出,一个数能否被7整除,只要看用“去掉这个数的末位后得到的新数再减去末位数的2倍”,当它们的差能被7整除时,这个数就能被7整除;当它们的差不能被7整除时,这个数便不能被7整。如果要判断的数比较大时,可连续多次使用上面的方法。
这种方法不比用7去试除要简便一些吗?
以上就是“高中趣味数学:一个数能否被7整除”的所有内容,希望对大家有所帮助!
相关推荐:
标签:趣味数学
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。