编辑:sx_liujy
2016-11-04
高中生必知的数学家祖冲之在数学方面做出了巨大的贡献,他推算出圆周率π的不足近似值(朒数)3.1415926和过剩近似值(盈数)3.1415927,指出π的真值在盈、朒两限之间,即3.1415926<π<3.1415927,并用以校算新莽嘉量斛的容积。
这个圆周率值是当时世界上最先进的数学成就,直到15世纪阿拉伯数学家阿尔·卡西(al-kāshī)和16世纪法国数学家韦达(1540~1603)才得到更精确的结果。祖冲之还确定了两个分数形式的圆周率值,约率π=22/7(≈3.14),密率π=355/113(≈3.1415929),其中密率是在分母小于1000条件下圆周率的最佳近似分数。密率为祖冲之首创,直到16世纪才被德国数学家奥托(1550~1605)和荷兰工程师安托尼兹(1543~1620)重新得到。在西方数学史上,这个圆周率值常被称为安托尼兹率。祖冲之和其子祖暅,在刘徽工作的基础上圆满解决了球体积计算问题。他们得到下列结果:“牟合方盖”(底径相等的两圆柱直交之公共部分)的体积等推算过程中提出了“幂势既同,则积不容异(二立体等高处截面积恒相等,则二立体体积相等)”原理。这个原理,直到17世纪才为意大利数学家卡瓦列利(1598~1647)重新提出,而被称为卡瓦列利原理,中国现在一般称为祖暅公理。据《隋书·律历志》记载,祖冲之对于二次方程和三次方程也有所研究。所著《缀术》一书,是著名的《算经十书》之一,曾被唐代国子监和朝鲜、日本用做算学课本,惜已失传。
在天文历法方面,祖冲之在长期观测、精确计算和对历史文献深入研究的基础上,创制了《大明历》。他最早把岁差引进历法,提高历法精确性,这是中国历法史上的重大进步。他还采用了391年有144个闰月的新闰周,突破了沿袭很久的19年7闰的传统方法。《大明历》中使用的数据,大多依据长期实测的结果,相当精确。按照祖冲之的数据计算,一个回归年的日数为365.24281481平太阳日。一个交点月的日数为27.21223平太阳日,关于木星(当时称岁星)每84年超辰一次的结论,相当于求出木星公转周期为11.858年。这些都非常接近现测数值。所推算的五大行星会合周期,也是当时最好的结果。他还发明用圭表测量冬至前后若干天的正午太阳影长以定冬至时刻的方法。这个方法也为后世长期采用。宋孝武帝大明六年(462),祖冲之上书刘宋朝廷,请求颁行《大明历》,但遭到皇帝宠臣戴法兴的反对。戴法兴指责引进岁差和改革闰周等违背了儒家经典,是“诬天背经”。祖冲之据理力争,针锋相对地写了一篇辩驳的奏章。他表示“愿闻显据,以核理实”,并引用历史文献和天象观测的大量事实,逐条批驳了戴法兴的论点。他明确指出天体运行“有形可检,有数可推”,是有规律的。科学在不断进步,人们不能“信古而疑今”,充分体现了一位科学家坚持真理,革旧创新的可贵精神。但是,祖冲之生前《大明历》未能颁行。后经祖暅三次上书朝廷,推荐《大明历》,终于在梁武帝天监九年(510)被采用颁行,前后行用八十年,对后世历家产生了重要的影响。
2016年高中生必知的数学家祖冲之的介绍就为大家分享到这里,希望大家可以在学习之余对此有所了解。
相关链接
标签:数学家
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。