编辑:sx_wangha
2012-03-19
【读者按】本节主要包括古典概型的特征、古典概型的概率计算公式等主要知识点。其中主要是理解和掌握古典概型的概率计算公式。
知识点总结
本节主要包括古典概型的特征、古典概型的概率计算公式等主要知识点。其中主要是理解和掌握古典概型的概率计算公式,这个并不难。
1、古典概型
(1)定义:如果试验中所有可能出现的基本事件只有有限个,并且每个基本事件出现的可能性相等,则称此概率为古典概型。
(2)特点:①试验结果的有限性②所有结果的等可能性
(3)古典概型的解题步骤;
①求出试验的总的基本事件数;
②求出事件A所包含的基本事件数;
2、基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能事件除外)。
常见考法
本节在段考中,一般以选择题、填空题和解答题的形式考查古典概型的特征、古典概型的概率计算公式等知识点,属于中档题。在高考中多融合在离散型随机变量的分布列中考查古典概型的概率计算公式,属于中档题,先求出各个基本量再代入即可解答。
误区提醒
在求试验的基本事件时,有时容易计算出错。基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能事件除外)。
【典型例题】
例1如图,四边形ABCD被两条对角线分成四个小三角形,若每个小三角形用4种不同颜色中的任一种涂染,求出现相邻三角形均不同色的概率.
解:若不考虑相邻三角形不同色的要求,则有44=256(种)涂法,下面求相邻三角形不同色的涂法种数:①若△AOB与△COD同色,它们共有4种涂法,对每一种涂法,△BOC与△AOD各有3种涂法,所以此时共有4×3×3=36(种)涂法.②若△AOB与△COD不同色,它们共有4×3=12(种)涂法,对每一种涂法△BOC与△AOD各有2种涂法,所以此时有4×3×2×2=48(种)涂法.故相邻三角形均不同色的概率
例2盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取2次,每次只取1只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各1只;(3)取到的2只中至少有1只正品.
解:从6只灯泡中有放回地任取2次,每次只取1只,共有62=36(种)不同取法.
相关推荐:
更多文章进入:
标签:高中数学讲解
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。