编辑:lvzw
2012-11-28
编者按:精品学习网小编为大家收集了“高中数学讲解:函数的基本知识点”,供大家参考,希望对大家有所帮助!
1.函数的定义
定义1 设x和y是两个变量,D是实数集R的某个子集.如果对任何的x∈D,按照某种对应法则,变量y总有确定的值与之对应,则称变量y是定义在D上变量x的函数,记作y = f(x).称D为该函数的定义域,称x为自变,.y为因变量.
当自变量x取数值xo∈ D时,与xo对应的因变量y的值称为函数y=f(x),当x取遍D的所有数值时,对应的变量y取值的全体组成的数集称为函数y二f(x)的值域.
如果自变量在定义域内任取一个值时,对应的函数值只有一个,这种函数称为单值函数,否则称为多值函数.
例如,y=3x+ l是单值函数,而由方程x2+y2=1确定的函数y=士√1- x2就是多值函数.以后凡没有特别说明,本书所讨论的函数都是指单值函数.
函数的表示法通常有三种,即表格法、图示法和公式法。
2.函数的两个基本要素
由函数的定义知,确定函数的两个基本要素是定义域和对应法则.也就是说,两个函数只有当它们的定义域和对应法则完全相同时,两个函数才是相同的.
3.函数的几种特性
(1)有界性设函数y = f(x)的定义域为D,数集X∈D,如果存在正数M,使得对于任意的x∈X,都有不等式
∣f(x) ∣≤M
成立,则称了(x)在X上有界,如果这样的M不存在,则称函数在X上无界.
(2)单调性.设函数y=f(x)在区向X上有定义.如果对于任意的x1,x2 ∈ X,当x1< x2时,均有f(x1)
(3)奇偶性设函数y = f(x)的定义域D是关于原点对称的,如果对于任意的x∈D,均有f(x)=f(一x),则称.f (x)为偶函数;如果对于任意的x∈ D,均有f(x)=-f(x),则称了(x)为奇函数.
(4)周期性设函数y. = f(x),如果存在不为零的常数T,.使得对于任意x∈D均有x+T∈D,且f(x)=f(x+T)成立,则称函数y=f(X)为周期函数,称T为f(x)的一个周期。
显然,若T是周期函数f(x)的周期,则kT也是f (x)的周期((k=士1,士2,士3,---).
通常我们说的周期是指最小正周期.
以上就是精品学习网为大家提供的“高中数学讲解:函数的基本知识点”希望能对考生产生帮助,更多资料请咨询精品学习网中考频道。
标签:高中数学讲解
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。