编辑:sx_songj
2014-06-09
摘要:精品学习网的小编为大家整理了高中数学讲解:函数单调性的判断,供大家参考,希望小编的总结可以帮助到大家,祝大家在精品学习网学习愉快。
函数的单调性也叫函数的增减性。函数的单调性是对某个区间而言的,它是一个局部概念。数学中关于函数单调性的学习,大体上可以归结为增减函数的学习。
一、单调函数的增减函数的判断
若函数y=f(x)在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间。此时也说函数是这一区间上的单调函数。
在单调区间上,增函数的图像是上升的,减函数的图像是下降的。
注:在单调性中有如下性质。
图例:↑(增函数)↓(减函数)
↑+↑=↑ 两个增函数之和仍为增函数
↑-↓=↑ 增函数减去减函数为增函数
↓+↓=↓ 两个减函数之和仍为减函数
↓-↑=↓ 减函数减去增函数为减函数
二、复合函数的单调性解法技巧
若内层与外层函数有同样的单调性,则复合函数为增函数
若内层与外层函数有相反的单调性,则复合函数为减函数
例子:求f(x)=2^(x^2+2x+1)的单调性。
解:f(x)=2^u 外层函数
u=x^2+2x+1 内层函数
外层函数为增函数,所以只需考察内层函数的单调性:当x<-1时为减,当x>-1时为增
所以f(x)=2^(x^2+2x+1)当x>-1时为增,当x<-1时为减
三、复合函数的解题规律
判断函数的单调性y = 1/( x^2-2x-3)。
设x^2-2x-3=t,
令x^2-2x-3=0,
解得:x=3或x=-1,
当x>3和x<-1时,t>0,
当-1
所以得到x^2-2x-1对称轴是1。
根据反比例函数性质:
在整个定义域上是1/t是减函数。
当t>0时,x>3时,
t是增函数,1/t是减函数,
所以(3,+∞)是减区间,
而x<-1时,t是减函数,
所以1/t是增函数。
因此(-∞,-1)是增区间,
当x<0时,
-1
所以1/t是增函数,
因此(-1,1)是增区间,
而1<x<3时,t是增函数,1 p="" t是减函数,
因此(1,3)是减区间,
得到增区间是(-∞,-1)和(-1,1),
(1,3)和(3,+∞)是减区间。
参照以上例题,函数的单调性解题规律,你是否已经知道了呢?函数单调性的学习,重点在于掌握函数的增减函数的判定。
总结:高中数学讲解:函数单调性的判断就为大家介绍到这儿了,希望小编的整理可以帮助到大家,祝大家学习进步。
小编推荐:
标签:高中数学讲解
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。