您当前所在位置:首页 > 高中 > 高中数学学习 > 学习方法

高中数学学习指导:圆锥曲线

编辑:sx_wangha

2012-09-19

圆锥曲线包括椭圆,双曲线,抛物线

1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。

2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。

3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。

4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0

·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。

·圆锥曲线的参数方程和直角坐标方程:

1)直线

参数方程:x=X+tcosθ y=Y+tsinθ (t为参数)

直角坐标:y=ax+b

2)圆

参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 )

直角坐标:x^2+y^2=r^2 (r 为半径)

3)椭圆

参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 )

直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1

4)双曲线

参数方程:x=X+asecθ y=Y+btanθ (θ为参数 )

直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)

5)抛物线

参数方程:x=2pt^2 y=2pt (t为参数)

直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )

圆锥曲线(二次非圆曲线)的统一极坐标方程为

ρ=ep/(1-e·cosθ)

其中e表示离心率,p为焦点到准线的距离。

我是高考过来的,一般我们省是自主命题,最后一道大题通常就是圆锥曲线的综合型题目,这种题目的分值大约18分左右但是计算量相当的巨大,一般会设几个小问题,建议楼主视自己的情况而定,有取舍的做这些题目,而所谓的重点就是平常练习中的熟练程度了,高考的数学还是考察个人的解题熟练程度,所以想要取得高分还是要做一些有代表性的题目在注意总结考120以上应该没有问题,最后祝你金榜题名哈!

标签:学习方法

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。