编辑:sx_xingt
2013-04-08
【摘要】您好,这里是高中数学学习栏目,数学是培养逻辑思维能力,分析能力的重要学科,所以小编在此为您编辑了此文:高中数学学习:高考数学解题中的通性通法”以方便您的学习,希望能给您带来帮助。
本文题目:高中数学学习:高考数学解题中的通性通法
对于中学阶段用于解答数学问题的方法,可将其分为三类:
(1)具有创立学科功能的方法.如公理化方法、模型化方法、结构化方法,以及集合论方法、极限方法、坐标方法、向量方法等.在具体的解题中,具有统帅全局的作用.
(2)体现一般思维规律的方法.如观察、试验、比较、分类、猜想、类比、联想、归纳、演绎、分析、综合等.在具体的解题中,有通性通法、适应面广的特征,常用于思路的发现与探求.
(3)具体进行论证演算的方法.这又可以依其适应面分为两个层次:第一层次是适应面较宽的求解方法,如消元法、换元法、降次法、待定系数法、反证法、同一法、数学归纳法(即递推法)、坐标法、三角法、数形结合法、构造法、配方法等等;第二层次是适应面较窄的求解技巧,如因式分解法以及因式分解里的“裂项法”、函数作图的“描点法”、以及三角函数作图的“五点法”、几何证明里的“截长补短法”、“补形法”、数列求和里的“裂项相消法”等.
我们知道,数学是关于数与形的科学,数与形的有机结合是数学解题的基本思想.数学是关于模式的科学,这反映了在数学解题时,需要进行“模式识别”,需要构建标准的模型.往往遇到的问题是标准模型里的参数是需要待定的,这说明待定系数法属于解题的通性通法.数学是一种符号,引入符号可以将自然语言转换为符号语言,通过中间量的代换,就能将复杂问题简单化.数学解题就是一系列连续的化归与转化,将复杂问题简单化、陌生问题熟悉化,其消元、减少参变元的个数是常用的方法.在代数式的变形中,则往往要分离出非负的量,配方技术是经常使用且很奏效的方法.
数形转换、待定系数、变量代换、消元、配方法等是中学数学解题的通性通法.把几何的直观推理、代数的有序推理、解题的通性通法与具体的案例结合起来,整体把握数学解题的通性通法,抓住通性通法的本质,科学有效地实施解题分析、解题思维链的形成、解题后的反思与优化,从而通过有限问题的训练来获得解答无限问题的解题智慧.
【总结】2013年精品学习网为小编在此为您收集了此文章“高中数学学习:高考数学解题中的通性通法”,今后还会发布更多更好的文章希望对大家有所帮助,祝您在精品学习网学习愉快!
标签:学习方法
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。