您当前所在位置:首页 > 高中 > 高中数学学习 > 学习方法

高一数学学习:集合大小定义的基本要求六

编辑:sx_zhangh

2014-02-02

为了帮助学生们更好地学习高中数学,精品学习网精心为大家搜集整理了“高一数学学习:集合大小定义的基本要求六”,希望对大家的数学学习有所帮助!

高一数学学习:集合大小定义的基本要求六

在上面的两个例子中我们会有这样的感觉,对于无限集合来说,从部分中似乎可以“产生”出整体来。比如射线上的每隔一厘米画一个点的例子,如果我们把不是10的倍数的点去掉,然后将平面“收缩”到原来尺度的十分之一,我们就重新得到了原来的那个点集。在装豆子的口袋的例子中,只要从去掉1号口袋后剩下的那些袋子中拿去一粒豆子,我们就又得到了原来的那个大口袋。这暗示了无限集合的一个重要特点:从某种意义上来说,它和自己的一部分相似。事实上,无限集合的一个定义就是“能和自己的一部分一一对应的集合”。所以在无限集合大小的比较中,违反了“整体大于部分”的原则并不奇怪,因为这恰好就是无限集合的特征。

如果使用一一对应的比较方法,我们发现它满足所有第二节中提出的关于集合大小定义的要求。而且除了“整体大于部分”这个我们已经解释过的不适用的原则外,不违反其他的直觉和常识。事实上用一一对应的方法来比较两个集合的大小,也是非常符合直观的。如果有两盒火柴,我们想比较哪盒中的火柴数量更多,我们大可不必去数出每盒中火柴的数量,那样很容易出错。其实只要从不断地从两盒火柴中拿掉相同数量的火柴,最后如果同时两盒都不剩下火柴,那么就说明数量一样多,否则就是还剩有火柴的那盒比较多。

经过精心的整理,有关“高一数学学习:集合大小定义的基本要求六”的内容已经呈现给大家,祝大家学习愉快!

相关推荐:

关于例题的高中数学学习方法

高中数学学习方法:每天做数学题

标签:学习方法

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。