编辑:sx_zhangh
2014-02-02
你还在为高中数学学习而苦恼吗?别担心,看了“高一数学学习:集合大小定义的基本要求十”以后你会有很大的收获:
高一数学学习:集合大小定义的基本要求十
如果没有自然数序结构这个“背景”,我们就只能够使用一一对应的方法来讨论集合的基数,那种“自然数的个数是正偶数的个数的两倍”的直觉只是一种错觉。比如说考虑下面平面图上,所有(2n,n)这样的点所组成的集合(其中n是自然数)。如果站在x轴的角度来看,我们发现每隔一列就有一个点,而列数显然和自然数一样多,所以点数就该和正偶数一样多;如果站在y轴的角度来看,我们发现每行都有一个点,而行数也和自然数一样多,所以点数就该和自然数一样多。按照集合基数的观点,自然数和正偶数一样多,上面这种情况完全不造成矛盾,但是“直觉”所给予的一会儿“一样多”一会儿“两倍”的印象,就没有太大的意义了(最多得到“两倍的无穷大等于无穷大”这种我们按照一一对应原则早已熟知,而且解释得更好的观点)。
除了序结构外,还有其他的数学结构。法国著名的布尔巴基学派就认为数学基于三种母结构:序结构、代数结构和拓扑结构,各种数学结构可以混杂在一起得出不同的数学对象,比如说实数集上有比较大小的序结构,还有由算术运算(加和乘,减和除是它们的逆运算)定义的代数结构,以及由极限理论(它规定了某些点必须在另一些点的“附近”)定义的拓扑结构。布尔巴基学派试图用结构主义的观点来统一数学,出版了著名的《数学原理》。结构主义的观点大致来说,就是数学结构决定数学对象。两个分别定义在两个不同集合上的数学对象,如果它们的数学结构相同,那么即使集合中的元素很不相同,它们其实也是同一个数学对象。在数学中我们有时会碰到“同构”这个词,就是指在某种一一映射下,两个数学对象的数学结构相同。
举一个简单的例子。中学里我们学过复数和它的几何表示法,知道每个复数都可以对应到直角坐标平面上的一个点,而复数的加法和乘法也都有各自的几何意义。在这里,一个复数是a+bi这样的一对数,还是平面上的一个点(a,b)并不是关键,尽管一对数和一个点是完全不同的两样东西,只要在实数对集合和平面点集上面由加法和乘法决定代数结构是相同的,它们都可称作是复数,是同一个数学对象。相反地,如果我们在平面上定义另一种乘法为(a1, b1)*(a2, b2)=((a1*a2, b1*b2),那么尽管平面上的点仍旧是那些,但是因为在上面所定义的数学结构变了,于是就完全是两种不同的数学对象了。
通过阅读“高一数学学习:集合大小定义的基本要求十”这篇文章,小编相信大家对高中数学又有了更进一步的了解,希望大家学习轻松愉快!
相关推荐:
标签:学习方法
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。