编辑:sx_zhangh
2014-02-02
精品学习网为大家提供“高一数学学习:集合大小定义的基本要求十一”一文,供大家参考使用:
高一数学学习:集合大小定义的基本要求十一
象上面这样的例子中数学结构的相同当然很直观,而有一些此类问题则牵涉到极其深刻的数学理论,比如说著名的庞加莱猜想(新千年的七大数学问题之一,价值百万美金:-))就是问,是否任意闭单连通3维流形都同胚于3维球,换句话说,是否给定了“闭单连通”这个条件,在3维流形上就只能有一种拓扑结构,也就是3维球的拓扑结构?另外,证明两个原来似乎没有关系的数学对象的数学结构其实是相同的,意义非常重大,这样的定理是连通两个数学领域的桥梁。这意味着这两个数学对象其实是同一种东西,对于其中一个数学对象成立的理论,可以立刻应用在另一个上面;以往用来研究一种数学对象的方法,就可以被用来研究另一类数学对象。本文开头说到英国数学家怀尔斯证明了费尔马大定理,他证明的其实是更一般的“谷山-志村猜想”。这个猜想就是此类意义重大的命题,它沟通了两个数学领域:椭圆曲线和模形式。它的证明被称为是“人类智慧的凯歌”。
最后举个搞笑的例子。网上有人发现了下面两张图片,左边是变形金刚的电影招贴,右边是蓝猫的广告,构成画面的元素不同,一个是机器人,一个是蓝猫和它的朋友,但是摆的“甫士”和画面结构却相同,也算是个不光彩的“同构”例子吧。
“一个平面上的点应该比一条直线上的点的个数多”这样的直觉也可以用附加的数学结构来解释合理性。当我们想像直线或平面上的点时,我们不但想像了那些点集,同时也在想像着这些点集构成的直线和平面,于是它们就再不是那些集合中散乱的点了,它们的排列非常有规律。换句话说,我们在点集上增加了决定直线和平面的数学结构。如果我们把直线和平面看作是实数域上的线性空间(关于线性空间的理论是线性代数,所有理科的学生会在大学一年级学习),我们就遇见了一些数学结构:首先我们需要一个实数域,上面有一个域的代数结构,其次我们在直线和平面的点集上定义了一个交换群的代数结构,最后在实数域和交换群上定义了称作“数乘”的代数结构,这个代数结构同域和交换群上的各种运算都兼容,这样我们最终得到了这个被称为“实数域上的线性空间”的代数结构。上面这一串话也许有点复杂,但是中心思想就是上面所说的结构主义的思想:数学对象是由各种数学结构混杂在一起(当然要合理地混杂在一起,上面所说的“兼容”就是这个意思)而得到的。一旦我们这样规定了线性空间的结构,我们就可以定义线性空间的维数,这时我们可以说,两维的线性空间(平面)在这种意义下要比一维的线性空间(直线)大。
从上面两个例子我们看到,当集合中的元素只是被看做一个没有任何数学结构的集合中散乱的元素时,我们只能用一一对应的方法来比较集合的大小;而当丰富多彩的数学结构被加在集合上时,我们才有可能用更精细和更符合直觉的手段来定义不同的比较(附加有数学结构的)集合大小的方法。
以上就是“高一数学学习:集合大小定义的基本要求十一”的所有内容,希望对大家有所帮助!
相关推荐:
标签:学习方法
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。