编辑:sx_wuqb
2013-12-06
好多老师又要忙着为同学们写教案、备课。教案的制作需要清晰地思路,条理的章程,精品学习网编辑了高一年级数学教案精选:椭圆的定义,欢迎老师们参考借鉴!
教学目标:
1、椭圆是圆锥曲线的一种,是高中数学教学中的重点和难点,所以这部分内容中的知识点学生必须达到理解、应用的水平;
2、利用投影、计算机模拟动点的运动,增强直观性,激励学生的学习动机,培养学生的数学想象和抽象思维能力。
教学重点:对椭圆定义的理解,其中a>c容易出错。
教学难点:方程的推导过程。
教学过程:
(1) 复习
提问:动点轨迹的一般求法?
(通过回忆性质的提问,明示这节课所要学的内 容与原来所学知识之间的内在联系。并为后面椭圆的标准方程的推导作好准备。)(2) 引入
举例:椭圆是常见的图形,如:汽车油罐的横截面,立体几何中圆的直观图,天体中,行星绕太阳运行的轨道等等;
计算机:动态演示行星运行的轨道。
(进一步使学生明确学习椭圆的重要性和必要性,借计算机形成生动的直观,使学生印象加深,以便更好地掌握椭圆的形状。)
(3) 教学实施
投影:椭圆的定义:
平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(一般用2c表示)
常数一般用2 表示。(讲解定义时要注意条件: )
计算机:动态模拟动点轨迹的形成过程。
提问:如何求轨迹的方程?
(引导学生推导椭圆的标准方程)
板书:椭圆的标准方程的推导过程。(略)
(推导中注意:1)结合已画出的图形建立坐标系,容易为学生所接受;2)在推导过程中,要抓住“怎样消去方程中的根式”这一关键问题,演算虽较繁,也能迎刃而解;3)其中焦点为F1( ,0)、F2(c,0), ;4)如果焦点在 轴上,焦点为F1(0, )、F2(0,c),只要将方程中 , 互换就可得到它的方程)
投影:椭圆的标准方程:
( )
( )
投影:例1 平面内两个定点的距离是8,写出到这两个定点的距离的和是10的点的轨迹方程
(由椭圆的定义可知:所求轨迹为椭圆;则只要求出 、 、 即可)
形成性练习:课本P74:2,3
(4) 小结 本节课学习了椭圆的定义及标准方程,应注意以下几点:
①椭圆的定义中, ②椭圆的标准方程中,焦点的位置看 , 的分母大小来确定
③ 、 、 的几何意义
(5) 作业
P80:2,4(1)(3)
高一年级数学教案精选:椭圆的定义是不是很有意义呢?各位同学和老师在阅读的同时也要注意开拓思维,注重积累,这样才能更好的提高自己,精品学习网伴你成长!
标签:高一数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。