您当前所在位置:首页 > 高中 > 教案 > 高一数学教案

2016学年高一数学《二倍角的三角函数》教案设计

编辑:sx_yanxf

2016-05-05

教案是老师为讲授新一课而做的教学设计和设想,编写教案要依据教科书和教学大纲,从学生的实际出发,精心设计,精品学习网准备了高一数学二倍角的三角函数教案设计,希望对大家有用。

教学目标:

掌握二倍角的正弦、余弦、正切公式,能用上述公式进行简单的求值、化简、恒等证明;引导学生发现数学规律,让学生体会化归这一基本数学思想在发现中所起的作用,培养学生的创新意识.

教学重点:

二倍角公式的推导及简单应用.

教学难点:

理解倍角公式,用单角的三角函数表示二倍角的三角函数.

教学过程:

Ⅰ.课题导入

前一段时间,我们共同探讨了和角公式、差角公式,今天,我们继续探讨一下二倍角公式.我们知道,和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?请同学们试推.

先回忆和角公式

sin(α+β)=sinαcosβ+cosαsinβ

当α=β时,sin(α+β)=sin2α=2sinαcosα

即:sin2α=2sinαcosα(S2α)

cos(α+β)=cosαcosβ-sinαsinβ

当α=β时cos(α+β)=cos2α=cos2α-sin2α

即:cos2α=cos2α-sin2α(C2α)

tan(α+β)=tanα+tanβ1-tanαtanβ

当α=β时,tan2α=2tanα1-tan2α

Ⅱ.讲授新课

同学们推证所得结果是否与此结果相同呢?其中由于sin2α+cos2α=1,公式C2α还可以变形为:cos2α=2cos2α-1或:cos2α=1-2sin2α

同学们是否也考虑到了呢?

另外运用这些公式要注意如下几点:

(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有当α≠π2 +kπ及α≠π4 +kπ2  (k∈Z)时才成立,否则不成立(因为当α=π2 +kπ,k∈Z时,tanα的值不存在;当α=π4 +kπ2 ,k∈Z时tan2α的值不存在).

当α=π2 +kπ(k∈Z)时,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式:

即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0

(2)在一般情况下,sin2α≠2sinα

例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情况下,才有可能成立[当且仅当α=kπ(k∈Z)时,sin2α=2sinα=0成立].

同样在一般情况下cos2α≠2cosαtan2α≠2tanα

(3)倍角公式不仅可运用于将2α作为α的2倍的情况,还可以运用于诸如将4α作为2α的2倍,将α作为 α2 的2倍,将 α2 作为 α4 的2倍,将3α作为 3α2 的2倍等等.

上文所提供的高一数学二倍角的三角函数教案设计,大家看了之后是不是感觉很受用呢?希望大家对本网及时关教注。

相关推荐:

高一数学直线与圆的位置关系教案检查总结范文  

高一数学直线与圆的位置关系教案封面2016  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。

精品学习网高中教案频道为考生提供最新最权威的高一数学教案大全、高一数学教案指导、数学教案素材以及数学教案模板等相关教案考试内容。