您当前所在位置:首页 > 高中 > 教案 > 高二数学教案

高二数学教案:等腰三角形的性质(一)

编辑:sx_mengxiang

2014-10-31

高二数学教案:等腰三角形的性质(一)

一、教学目的

使学生掌握等腰三角形性质定理(包括推论)及其证明.

二、教学重点、难点

重点:等腰三角形的性质.

难点:文字命题的证明.

三、教学过程

复习提问

什么叫做等腰三角形?什么是等腰三角形的腰、底边、顶点和底角?

引入新课

教师演示事先备好的等腰三角形纸片对折,使两腰叠在一起,发现它的两底角重合,从而得到等腰三角形两底角相等的命题,当然此命题的真实性还需推理论证.

新课

1.等腰三角形的性质定理 等腰三角形的两底角相等(简写成“等边对等角”).

让学生回忆前面学过的文字命题证明的全过程.引导学生写出已知、求证,并且都要结合图形使之具体化.

2.推论1 等腰三角形顶角平分线平分底边且垂直于底边.

从性质定理的证明过程可以知道(如图1)BD=DC,∠ADB=∠ADC,所以AD平分BC,且AD⊥BC,即得推论.

从推论1 可以知道,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.

推论2 等边三角形的各角都相等,并且每一个角都等于60°.

3.等腰三角形性质的应用.等腰三角形的性质有着重要的应用,一般说,利用“等腰三角形两底角相等”的性质证明两角相等;利用“等腰三角形底边上的三条主要线段重合”的性质,来证明两条线段相等、两个角相等及两条直线互相垂直;利用“等边三角形各角相等,并且每一个角都等于60°”的性质,来证明一个角是60°,或作图中通过作等边三角形,作出一个60°的角.

例1 已知:如图2,房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC、屋椽AB=AC.求顶架上∠B、∠C、∠BAD、∠CAD的度数.

这是一道几何计算题,要使学生熟悉解计算题的步骤,引导学生写出解题过程.

小结

1.叙述等腰三角形的性质(本堂所讲定理及推论)及其应用.

2.等腰三角形顶角与底角之间的常用关系式:在△ABC中,AB=AC,则

(1)∠A=180°-2∠B=180°-2∠C;

3.已知等腰三角形一个角的度数,求其它两个角的度数:(1)若已知角是钝角或直角,则此角一定为顶角,于是由2中(2)可求出两底角;(2)若已知角是锐角,则此角可能是顶角,也可能是底角.若为前者,可按2中(2)求出两底角.若为后者,则可按2中(1)求出顶角.

练习:略

作业:略

四、教学注意问题

1.等腰三角形的性质在今后解(证)几何题中有着重要的应用,务必引起学生重视.且应反复练习.

2.几何计算题的一般解题步骤.

总结:高二数学教案:等腰三角形的性质(一)就为大家介绍到这儿了,希望小编的整理可以帮助到大家,祝大家在精品学习网学习愉快。

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。