您当前所在位置:首页 > 高中 > 教案 > 高三数学教案

高三高考数学教案:直线与平面的位置关系

编辑:sx_mengxiang

2014-11-08

下面是精品学习网高中频道整理的关于高三高考数学教案:直线与平面的位置关系,希望能帮助一些教师,把这一块的知识点给学生讲述清楚,让学生掌握住重点。

一、教学目标

1、知识与技能:(1)了解空间中直线与平面的位置关系;(2)了解空间中平面与平面的位置关系;(3)培养学生的空间想象能力。

2、过程与方法:(1)学生通过观察与类比加深了对这些位置关系的理解、掌握;(2)让学生利用已有的知识与经验归纳整理本节所学知识。

二、教学重点、难点

重点:空间直线与平面、平面与平面之间的位置关系。

难点:用图形表达直线与平面、平面与平面的位置关系。

三、学法与教法

1、学法:学生借助实物,通过观察、类比、思考等,较好地完成本节课的教学目标。

2、教法:观察类比,探究交流。

四、教学过程

(一)复习引入:

1 空间两直线的位置关系:(1)相交;(2)平行;(3)异面

2.公理4 :平行于同一条直线的两条直线互相平行 推理模式: .

3.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

4.等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.

5.空间两条异面直线的画法

6.异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线。推理模式: 与 是异面直线

7.异面直线所成的角:已知两条异面直线 ,经过空间任一点 作直线 , 所成的角的大小与点 的选择无关,把 所成的锐角(或直角)叫异面直线 所成的角(或夹角).为了简便,点 通常取在异面直线的一条上

8.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线 垂直,记作 .

(二)研探新知

1、引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系:

(1)直线在平面内 —— 有无数个公共点

(2)直线与平面相交 —— 有且只有一个公共点

(3)直线在平面平行 —— 没有公共点

指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示

a α a∩α=A a∥α

例1下列命题中正确的个数是( )

⑴若直线L上有无数个点不在平面内,则L∥

(2)若直线L与平面平行,则L与平面内的任意一条直线都平行

(3)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行

(4)若直线L与平面平行,则L与平面内任意一条直线都没有公共点

(A)0 (B) 1 (C) 2 (D)3

2、探析平面与平面的位置关系:

① 以长方体为例,探究相关平面之间的位置关系? 联系生活中的实例找面面关系.

② 讨论得出:相交、平行。

→定义:平行:没有公共点;相交:有一条公共直线。→符号表示:α∥β、 α∩β=b

→举实例:…

③ 画法:相交:……。平行:使两个平行四边形的对应边互相平行

④ 练习: 画平行平面;画一条直线和两个平行平面相交;画一个平面和两个平行平面相交

高三高考数学教案:直线与平面的位置关系就分享到这里了,希望广大师生喜欢本文,点击查看更多高三数学教案

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。