编辑:sx_mengxiang
2014-10-10
【摘要】在授课前做好每一课的教学计划,将能帮助老师们更加高效的传授知识,下面是“《磁场》物理教案”欢迎大家进入精品的高中频道,参考下面的教学计划,希望大家喜欢!
要点一 通电导线在磁场中的运动及受力
1.直线电流元分析法:把整段电流分成很多小段直线电流,其中每一小段就是一个电流元,先用左手定则判断出每小段电流元受到的安培力的方向,再判断整段电流所受安培力的方向,从而确定导体的运动方向.
2.特殊位置分析法,根据通电导体在特殊位置所受安培力方向,判断其运动方向,然后推广到一般位置.
3.等效分析法:环形电流可等效为小磁针,条形磁铁或小磁针也可等效为环形电流,通电螺线管可等效为多个环形电流或条形磁铁.
4.利用结论法:(1)两电流相互平行时,无转动趋势;电流同向导线相互吸引,电流反向导线相互排斥;(2)两电流不平行时,导线有转动到相互平行且电流同向的趋势.
要点二 带电粒子在有界磁场中的运动
有界匀强磁场指在局部空间存在着匀强磁场,带电粒子从磁场区域外垂直磁场方向射入磁场区域,在磁场区域内经历一段匀速圆周运动,也就是通过一段圆弧后离开磁场区域.由于运动的带电粒子垂直磁场方向,从磁场边界进入磁场的方向不同,或磁场区域边界不同,造成它在磁场中运动的圆弧轨道各不相同.如下面几种常见情景:
图3-1
解决这一类问题时,找到粒子在磁场中一段圆弧运动对应的圆心位置、半径大小以及与半径相关的几何关系是解题的关键.
1.三个(圆心、半径、时间)关键确定
研究带电粒子在匀强磁场中做圆周运动时,常考虑的几个问题:
(1)圆心的确定
已知带电粒子在圆周中两点的速度方向时(一般是射入点和射出点),沿洛伦兹力方向画出两条速度的垂线,这两条垂线相交于一点,该点即为圆心.(弦的垂直平分线过圆心也常用到)
(2)半径的确定
一般应用几何知识来确定.
(3)运动时间:t=θ360°T=φ2πT(θ、φ为圆周运动的圆心角),另外也可用弧长Δl与速率的比值来表示,即t=Δl/v.
图3-2
(4)粒子在磁场中运动的角度关系:
粒子的速度偏向角(φ)等于圆心角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍,即φ=α=2θ=ωt;相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,即θ′+θ=180°.如图3-2所示.
2.两类典型问题
(1)极值问题:常借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值.
注意 ①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.
②当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.
③当速率v变化时,圆周角大的,运动时间长.
(2)多解问题:多解形成的原因一般包含以下几个方面:
①粒子电性不确定;②磁场方向不确定;③临界状态不唯一;④粒子运动的往复性等.
关键点:①审题要细心.②重视粒子运动的情景分析.
要点三 带电粒子在复合场中的运动
复合场是指电场、磁场和重力场并存,或其中某两场并存,或分区域存在的某一空间.粒子经过该空间时可能受到的力有重力、静电力和洛伦兹力.处理带电粒子(带电体)在复合场中运动问题的方法:
1.正确分析带电粒子(带电体)的受力特征.带电粒子(带电体)在复合场中做什么运动,取决于带电粒子(带电体)所受的合外力及其初始速度.带电粒子(带电体)在磁场中所受的洛伦兹力还会随速度的变化而变化,而洛伦兹力的变化可能会引起带电粒子(带电体)所受的其他力的变化,因此应把带电粒子(带电体)的运动情况和受力情况结合起来分析,注意分析带电粒子(带电体)的受力和运动的相互关系,通过正确的受力分析和运动情况分析,明确带电粒子(带电体)的运动过程和运动性质,选择恰当的运动规律解决问题.
2.灵活选用力学规律
(1)当带电粒子(带电体)在复合场中做匀速运动时,就根据平衡条件列方程求解.
(2)当带电粒子(带电体)在复合场中做匀速圆周运动时,往往同时应用牛顿第二定律和平衡条件列方程求解.
(3)当带电粒子(带电体)在复合场中做非匀变速曲线运动时,常选用动能定理或能量守恒定律列方程求解.
(4)由于带电粒子(带电体)在复合场中受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,根据隐含条件列出辅助方程,再与其他方程联立求解.
(5)若匀强电场和匀强磁场是分开的独立的区域,则带电粒子在其中运动时,分别遵守在电场和磁场中运动规律,处理这类问题的时候要注意分阶段求解.
一、通电导线在磁场中的受力问题
【例1】 竖直放置的直导线
图3-3
AB与导电圆环的平面垂直且隔有一小段距离,直导线固定,圆环可以自由运动,当通以如图3-3所示方向的电流时(同时通电),从左向右看,线圈将( )
A.顺时针转动,同时靠近直导线AB
B.顺时针转动,同时离开直导线AB
C.逆时针转动,同时靠近直导线AB
D.不动
答案 C
解析 圆环处在通电直导线的磁场中,由右手螺旋定则判断出通电直导线右侧磁场方向垂直纸面向里,由左手定则判定,水平放置的圆环外侧半圆所受安培力向上,内侧半圆所受安培力方向向下,从左向右看逆时针转,转到与直导线在同一平面内时,由于靠近导线一侧的半圆环电流向上,方向与直导线中电流方向相同,互相吸引,直导线与另一侧半圆环电流反向,相互排斥,但靠近导线的半圆环处磁感应强度B值较大,故F引>F斥,对圆环来说合力向左.
二、带电粒子在有界磁场中的运动
【例2】 如图3-4所示,
图3-4
在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B.一质量为m,带电荷量为q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响).
(1)如果粒子恰好从A点射出磁场,求入射粒子的速度.
(2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线的夹角为φ(如图所示),求入射粒子的速度.
答案 (1)qBd2m (2)qBd(2R-d)2m[R(1+cos φ)-d]
解析 (1)由于粒子由P点垂直射入磁场,故圆弧轨迹的圆心在AP上,又由粒子从A点射出,故可知AP是圆轨迹的直径.
设入射粒子的速度为v1,由洛伦兹力的表达式和牛顿第二定律得mv21d/2=qv1B,解得v1=qBd2m.
(2)如下图所示,设O′是粒子在磁场中圆弧轨迹的圆心.连接O′Q,设O′Q=R′.
由几何关系得∠OQO′=φ
OO′=R′+R-d①
由余弦定理得(OO′)2=R2+R′2-2RR′cos φ②
联立①②式得R′=d(2R-d)2[R(1+cos φ)-d]③
设入射粒子的速度为v,由mv2R′=qvB
解出v=qBd(2R-d)2m[R(1+cos φ)-d]
三、复合场(电场磁场不同时存在)
【例3】 在空间存在一个变化的匀强电场和另一个变化的匀强磁场,电场的方向水平向右(如图3-5中由点B到点C),场强变化规律如图甲所示,磁感应强度变化规律如图乙所示,方向垂直于纸面.从t=1 s开始,在A点每隔2 s有一个相同的带电粒子(重力不计)沿AB方向(垂直于BC)以速度v0射出,恰好能击中C点,若AB=BC=l,且粒子在点A、C间的运动时间小于1 s,求:
图3-5
(1)磁场方向(简述判断理由).
(2)E0和B0的比值.
(3)t=1 s射出的粒子和t=3 s射出的粒子由A点运动到C点所经历的时间t1和t2之比.
答案 (1)垂直纸面向外(理由见解析) (2)2v0∶1 (3)2∶π
解析 (1)由图可知,电场与磁场是交替存在的,即同一时刻不可能同时既有电场,又有磁场.据题意对于同一粒子,从点A到点C,它只受静电力或磁场力中的一种,粒子能在静电力作用下从点A运动到点C,说明受向右的静电力,又因场强方向也向右,故粒子带正电.因为粒子能在磁场力作用下由A点运动到点C,说明它受到向右的磁场力,又因其带正电,根据左手定则可判断出磁场方向垂直于纸面向外.
(2)粒子只在磁场中运动时,它在洛伦兹力作用下做匀速圆周运动.因为AB=BC=l,则运动半径R=l.由牛顿第二定律知:qv0B0=mv20R,则B0=mv0ql
粒子只在电场中运动时,它做类平抛运动,在点A到点B方向上,有l=v0t
在点B到点C方向上,有a=qE0m,l=12at2
解得E0=2mv20ql,则E0B0=2v01
(3)t=1 s射出的粒子仅受到静电力作用,则粒子由A点运动到C点所经历的时间t1=lv0,因E0=2mv20ql,则t1=2mv0qE0,t=3 s射出的粒子仅受到磁场力作用,则粒子由A点运动到C点所经历的时间t2=14T,因为T=2πmqB0,所以t2=πm2qB0;故t1∶t2=2∶π.
总结:新的学期精品学习网会为您分享更多精彩内容,以上就是《磁场》物理教案,希望对您的教学有所帮助,请持续关注精品学习网!
标签:高二物理教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。