您当前所在位置:首页 > 高中 > 教学计划 > 高一数学教学计划

高中数学教学论文:浅谈二次函数在高中阶段的应用

编辑:

2014-06-23

二、二次函数的单调性,最值与图象。

在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-b2a ]及[-b2a ,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。

类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。

(1)y=x2+2|x-1|-1

(2)y=|x2-1|

(3)= x2+2|x|-1

这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。

类型Ⅳ设?(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。

求:g(t)并画出 y=g(t)的图象

解:?(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2

当1∈[t,t+1]即0≤t≤1,g(t)=-2

当t>1时,g(t)=?(t)=t2-2t-1

当t<0时,g(t)=?(t+1)=t2-2

t2-2, (t<0)

g(t)= -2,(0≤t≤1)

t2-2t-1, (t>1)

首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。

如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。