编辑:sx_gaohm
2016-03-18
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。精品小编准备了人教版数学高一下学期直线的倾斜角与斜率说课稿模板,希望你喜欢。
一、设计说明
“直线的倾斜角和斜率”一节是解析几何的入门课,学生对几何的认识仅仅停留在初中所学的直观图形的感性阶段,因此从学生最熟悉的直线入手,去研究刻划直线性质的量—倾斜角与斜率,通过对这一问题的探索去揭示解析几何的本质是:用代数方法研究图形的几何性质.学生通过这一节的学习,初步感受复杂问题简单化、数形紧密结合的思想.
二、教学内容分析
直线的倾斜角是这一章所有概念的基础,而这一章的概念核心是斜率,理解二者之间的关系将是学此章的关键;过两点的直线的斜率公式要讲透两点,其一是斜率的表象是一种的比值,要让学生理解这种表达式,为两条直线垂直时斜率有何关系、导数的概念作好铺垫;其二是斜率的本质是与所取的点无关.
三、教学目标
1.知识与技能:使学生理解倾斜角与斜率的概念,了解二者之间的关系,会求过已知两点的直线的斜率;
2.过程与方法:通过对倾斜角与斜率的探讨,培养学生转化的思想,提高解决问题的能力;
3.情感、态度与价值观:在探索倾斜角与斜率的关系过程中,明确倾斜角的变化对斜率的影响,并在其中体验严谨的治学态度.
四、教学重点与难点
重点:倾斜角、斜率、过两点的直线的斜率公式;
难点:斜率;
对难点的处理:先从简单的过原点的直线入手,再分倾斜角为锐角、钝角的情况去分析.
五、教学策略
对于“倾斜角与斜率”的教学,教师创设问题情境,学生在问题的激励下主动探究,教学方法采用师生互动式;而“过两点的直线的斜率公式”的教学则采用“学生探索、教师适时讲解”的方法.
六、教学过程
(一)新知的引入:
在平面直角坐标系内,画出几条不同直线,诱导学生思考,有何不同?
从而进一步设计决定直线的位置有哪些条件呢?
(设计意图:学生在教师“问题串”的引导下去思考,得出本章重要知识点)
(二)概念的讲解:通过讨论我们已经知道,决定直线的位置的条件是一个点与方向.那么如何刻划直线的方向呢?学生肯定会想到角,也会想到用纵坐标的变化量与横坐标的变化量的比值.这时就需要教师的适时点播—引出刻划直线的方向的两个量---直线的倾斜角和斜率.
一、直线的倾斜角与斜率
1. 倾斜角(
(1)倾斜角的定义:在平面直角坐标系中,直线与轴相交时,轴正向与直线向上方向之间所成的角;注:强调当直线与坐标轴轴平行时的倾斜角。
提问:倾斜角的范围是什么?(让学生自己去解决)
(2)倾斜角的范围:.
日常生活中,我们用坡度来刻划道路的“倾斜程度”,坡度即坡面的铅直高度和水平长度的比;为了用坐标的方法刻划直线的倾斜角,引入直线的斜率概念(也可以从一次函数的解析式引入,其中的K就是斜率.)
2.斜率让学生任画一条直线,类比坡度的方法,用坐标的方法刻划“直线的坡度”-斜率;
(强调若直线倾斜角相等,则斜率也相等)
教师定义:当横坐标从增加到时,纵坐标从增加到称为直线的斜率;
提问:由此定义,你能发现斜率的其他形式的定义吗?
再问:若倾斜角为锐角,求斜率的取值范围;若倾斜角在锐角内变化,斜率如何变化?
(三)例题的讲解(7分钟)
例1:求下列直线的斜率:
(1) y=x (2)y=1 (3)x=0.
(四)课堂练习
(五)本节课小结
八、设计反思
在平面解析几何《直线与方程》的教学中,教师应帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种思想应贯穿《直线与方程》一章教学的始终,帮助学生不断地体会“数形结合”的思想方法。
人教版数学高一下学期直线的倾斜角与斜率说课稿模板就为大家介绍到这里,希望对你有所帮助。
相关推荐:
标签:高一数学说课稿
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。