编辑:sx_hez
2013-12-13
高中是人生的一个转折点,把握时间,认真学习,为将来的路奠定基础,精品学习网为学子整理了“高三数学说课稿:充分条件与必要条件”一文:
高三数学说课稿:充分条件与必要条件
一、背景分析
1、学习任务分析:充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。
教学重点:充分条件、必要条件和充要条件三个概念的定义。
2、学生情况分析:从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.因此,新教材在第一章的小结与复习中,把学生的学习要求规定为“初步掌握充要条件”(注意:新教学大纲的教学目标是“掌握充要条件的意义”),这是比较切合教学实际的.由此可见,教师在充要条件这一内容的新授教学时,不可拔高要求追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展完善。
教学难点:“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.根据多年教学实践,学生对”充分条件”的概念较易接受,而必要条件的概念都难以理解.对于“B=>A”,称A是B的必要条件难于接受,A本是B推出的结论,怎么又变成条件了呢?对这学生难于理解。
教学关键:找出A、B,根据定义判断A=>B与B=>A是否成立。教学中,要强调先找出A、B,否则,学生可能会对必要条件难以理解。
二、教学目标设计:
(一) 知识目标:
1、正确理解充分条件、必要条件、充要条件三个概念。
2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系。
(二)能力目标:
1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。
2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。
(三)情感目标:
1、 通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受。
2、 通过对命题的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。
3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。
三、教学结构设计:
数学知识来源于生活实际,生活本身又是一个巨大的数学课堂,我在教学过程中注重把教材内容与生活实践结合起来,加强数学教学的实践性,给数学找到生活的原型。我对本节课的数学知识结构进行创造性地“教学加工”,在教学方法上采用了“合作——探索”的开放式教学模式,使课堂教学体现“参与式”、“生活化”、“探索性”,保证学生对数学知识的主动获取,促进学生充分、和谐、自主、个性化的发展。
整体思路为:教师创设情境,激发兴趣,引出课题 引导学生分析实例,给出定义 例题分析(采用开放式教学) 知识小结 扩展例题 练习反馈
整个教学设计的主要特色:
(1)由生活事例引出课题;
(2)采用开放式教学模式;
(3)扩展例题是分析生活中的名言名句,又将数学融入生活中。
努力做到:“教为不教,学为会学”;要“授之以鱼”更要“授之以渔”。
四、教学媒体设计:
本节课是概念课,要避免单一的下定义作练习模式,应该努力使课堂元素更为丰富。这节课,我借助了多媒体课件,配合教学,添加了一些与例题相匹配的图片背景,以激发学生的学习兴趣,另外将学生的自编题利用多媒体课件展示出来分析,提高了课堂教学的效率。
五、教学过程设计:
第一,创设情境,激发兴趣,引出课题:
考虑到高一学生学习这一章的知识储备不足,我利用日常生活中的具体事例来提出本课的问题,并与学生共同利用原有的知识分析,事例中包括几个问题,为后面定义的分析埋下伏笔。
我用的第一个事例是:“做一件衬衫,需用布料,到布店去买,问营业员应该买多少?他说买3米足够了。”这样,就产生了“3米布料”与“做一件衬衫够不够”的关系。用这个事件目的是为了第二部分引导学生得出充分条件的定义。这里要强调该事件包括:A:有3米布料;B:做一件衬衫够了。
第二个事例是:“一人病重,呼吸困难,急诊住院接氧气。”就产生了“氧气”与“活命与否”的关系。用这个事件的目的是为了第二部分引导学生得出必要条件的定义。这里要强调该事件包括:A:接氧气;B:活了。
用以上两个生活中的事例来说明数学中应研究的概念、关系,会使学生感到亲切自然,有助于提高兴趣和深入领会概念的内容,特别是它的必要性。
第二,引导学生分析实例,给出定义。
在第一部分激发起学生的学习兴趣后,紧接着开展第二部分,引导学生分析实例,让学生从事例中抽象出数学概念,得出本节课所要学习的充分条件和必要条件的定义。在引导过程中尽量放慢语速,结合事例帮助学生分析。
得出定义之后,这里有必要再利用本课前面两节的“逻辑联结词”和“四种命题”的知识来加强对必要条件定义的理解。(用前面的例子来说即:“活了,则说明在输氧”)可记作: 。
还应指出的是“必要条件”的定义,有如绕口令,要一次廓清,不可拖泥带水。这里,只要一下子“定义”清楚了,下边再解释“ ,A是B的必要条件”是怎么回事。这样处理,学生更容易接受“必要”二字。(因无A则无B,故欲有B,A是必要的)。
当两个定义分别给出后,我又对它们之间的区别加以分析说明,(充分条件可能会有多余,浪费,必要条件可能还不足(以使事件B成立))从而顺理成章地引出充要条件的定义(既是必要条件,又是充分条件,就称为充分必要条件,简称充要条件,记作: 。(不多不少,恰到好处)。使学生在此先对两个充分条件和必要条件两个概念的不同有了第一次的认识,第三部分再利用具体的数学事例来强化。
高三数学说课稿:充分条件与必要条件由精品学习网为您整理提供,更多高三数学相关说课信息,请关注【高三数学】
标签:高三数学说课稿
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。