2013年国考数量关系解题方法:数字特性

编辑:sx_wangha

2013-01-10

【编者按】精品学习网公务员频道为大家收集整理了“2013年国考数量关系解题方法:数字特性”供大家参考,希望对大家有所帮助!

数字特性法是指不直接求得最终结果,而只需要考虑最终计算结果的某种"数字特性",从而达到排除错误选项的方法。掌握数字特性法的关键,是掌握一些最基本的数字特性的规律。在公务员考试行测中需要考生掌握的基本的数字整除规律的数有:被2、4、8、5、25、125、3、9、7、11、13整除的规律,其中考察被3、9整除的规律最为常见。考察被7、11、13整除的规律并不常见,但也会出现。

【例1】甲、乙、丙三人合修一条公路,甲、乙合修6天修好公路的1/3,乙、丙合修2天修好余下的1/4,剩余的三人又修了5天才完成。共得收入1800元,如果按工作量计酬,则乙可获得收入为( )

A.330元 B.910元 C.560元 D.980元

【解析】:此题为工程问题,一般情况下是用设一思想求解,该题用设一思想求解时设总的工作量为1800比较好。然而仔细阅读题干,发现要求“乙可获得收入”与乙工作的总天数13(6+2+5)应该存在整除关系,答案选项只有B可以被13整除,答案选B。

【例2】某单位招录了10名新员工,按其应聘成绩排名1到10,并用10个连续的四位自然数依次作为他们的工号,凑巧的是每个人的工号都能被他们的成绩排名整除,问排名第三的员工工号所有数字之和是多少?

A.12 B.9 C.15 D.18

【解析】:根据题意,排名第三的员工工号能被3整除,则排名第三的员工工号所有数字之和应该能被3整除,这个结论不能排除任何一个选项。再根据10名新员工的工号是10个连续的四位自然数,说明排名第三的员工工号加上6后就是排名第九的员工工号,也就是说,排名第三的员工工号所有数字之和再加上6后一定能被9整除,只有A满足,答案选A。

【例3】在自然数1至50中,将所有不能被3除尽的数相加,所得的和是( )

A.865 B.866 C.867 D.868

【解析】:该题要求1至50中不能被3除尽的所有数的和,在1至50中不能被3除尽的所有数可以看成两个等差数列,然后再求这两个等差数列的和就可以了,这个方法稍微有点繁。如果从反面思考:“1至50中不能被3除尽的所有数的和”就应该等于1至50的和再减去1至50中能被3整除的所有数的和也可以得到答案。在第二种方法中,容易得出1至50的五十个数的和能被3整除,能被3整除的所有数的和也能被3整除,因此结果一定能被3整除,只有C满足,答案选C。

考生在解题时要善于发现题干中存在的整除关系,特别是被2、4、8、5、25、125、3、9、7、11、13整除的信息。通过对这些信息的处理,我们能在极短的时间内得到正确答案。

标签:行测辅导

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。