2016国考行测解题技巧——公示法巧解数学运算题

编辑:sx_wuzx

2015-11-06

在备考过程中,考生应该及时掌握2016国考行测解题技巧,在这里精品小编为您准备了2016国考行测解题技巧——公示法巧解数学运算题这篇文章,希望能帮助到您。

例题1:环保部门对一定时间内的河流水质进行采样,原计划每41分钟采样1次,但在实际采样过程中,第一次和最后一次采样的时间与原计划相同,每两次采样的间隔变成20分钟,采样次数比原计划增加了1倍。问实际采样次数是多少次?

A. 22

B. 32

C. 42

D. 52

【解析】设原计划采样x次,有x-1个时间间隔,总用时为41×(x-1)分钟。实际采样过程中,第一次和最后一次采样时间与原计划相同说明总用时不变。采样次数变为2x,有2x-1个时间间隔,总用时为20×(2x-1)分钟。所以41×(x-1)=20×(2x-1)?圯x=21次,实际采样次数为42次。此题答案为C。

例题2:五年级学生分成两队参加广播操比赛,排成甲、乙两个实心方阵,其中甲方阵最外层每边的人数为8。如果两队合并,可以另排成一个空心的丙方阵,丙方阵最外层每边的人数比乙方阵最外层每边的人数多4人,且甲方阵的人数正好填满丙方阵的空心。五年级一共有多少人?

A.200

B.236

C.260

D.288

【解析】空心的丙方阵人数=甲方阵人数+乙方阵人数,若丙方阵为实心的,那么实心的丙方阵人数=2×甲方阵人数+乙方阵人数,即实心丙方阵比乙方阵多82×2=128人。丙方阵最外层每边比乙方阵多4人,则丙方阵最外层总人数比乙方阵多4×4=16人,即多了16÷8=2层。这两层的人数即为实心丙方阵比乙方阵多的128人,则丙方阵最外层人数为(128+8)÷2=68人,丙方阵最外层每边人数为(68+4)÷4=18人。那么,共有182-82=260人。此题答案为C。

例题3:假设某地森林资源的增长速度是一定的,且不受到自然灾害等原因影响。那么若每年开采110万立方米,则可开采90年,若每年开采90万立方米则可开采210年。为了使这片森林可持续开发,则每年最多开采多少万立方米林木?( )

A.30

B.50

C.60

D.75

【解析】牛吃草问题变形森林每年再生(90×210-110×90)-(210-90)=75万立方米。如果每年开采的资源超过再生的数量,森林就慢慢减少,无法保证可持续开发。此题答案为D。

例题4:某零件加工厂按照工人完成的合格零件和不合格零件支付工资,工人每做出一个合格零件能得到工资10元,每做一个不合格零件将被扣除5元,已知某人一天共做了12个零件,得工资90元,那么他在这一天做了多少个不合格零件?

A.2

B.3

C.4

D.6

【解析】得失问题,求“失”,应当采用“设得求失”的思路。

做出一个合格零件得10元,做出一个不合格零件损失10+5=15元。若12个零件都合格,那么这个人可以得到12×10=120元,可现在只得了90元,说明做了(120-90)÷15=2个不合格的零件。此题答案为A。

小编相信大家能取得好的成绩,更多与2016国考行测解题技巧——公示法巧解数学运算题相关的信息请大家随时关注精品学习网公务员频道。

相关推荐:

2016国家公务员考试行测辅导——巧解多个体问题  

2016国家公务员考试行测备考之公约数公倍数考点 

标签:数量关系

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。