2015贵州公务员数量关系解题技巧:假设法巧解鸡兔同笼问题

编辑:sx_bilj

2015-04-02

在公务员(课程)行测考试中,常识部分的出题有知识面较广的特点。下面精品学习网公务员频道为大家列举了一些公务员数量关系解题技巧,希望能帮助考生积累知识,有效备考。

大家复习鸡兔同笼问题的过程中,首先要了解“鸡兔同笼”问题的结构特点,即题目中必须包含两个不同的主体,或者一个主体的两种不同属性。两个主体或属性之间,必须有两种和差关系,和差关系是联系两个主体或属性的关键条件。这时候我们可以通过用方程法、假设法解决问题。“假设法”解题的思路是:假设全为鸡,按照头数计算出脚的只数,然后与实际的脚数对比,缺少的脚数就是将兔子假设成鸡而减少的总脚数,再除以每只兔子减少的脚数,则为兔子的数量。

公式:兔数=(总脚数-2×总头数)÷2

“得失”问题公式:损失数=(每件应得×总件事-实得数)÷(每件应得+每件损失)

【例1】某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训?

A.8 B.10 C.12 D.15

【答案】D

【中公解析】解法1:根据题意,设甲教室当月举办了x次培训,乙教室当月举办了27-x次培训,则x+y=27、(5×10)x+(9×5)y=1290当然,这道题目可以进行解方程求解,但是数字比较大,运算量较大。

解法2:用奇偶特性就非常简单,直接秒杀。由,50x+45y=1290,1290是偶数,50x是偶数,则45y一定是偶数,即y是偶数。又,因为 x+y=27,27是奇数,则x一定是奇数,选D项。解法3:若全在甲教室培训,总共可以培训50×27=1350人次,但实际只有1290人次,而甲教室比乙教室多培训5人,所以乙教室培训的次数为(1350-1290)5=12次,则可以得出甲的为15次。

【例2】有大小两个瓶,大瓶可以装水5千克,小瓶可装水1千克,现在有100千克水共装了52瓶。问大瓶和小瓶相差多少个?

A. 26个 B. 28个 C. 30个 D. 32个

【答案】B

【中公解析】:将大瓶装水量视为兔脚,小瓶装水量为鸡脚,则大瓶数为(100-1×52)÷(5-1)=12个,小瓶数为(5×52-100)÷(5-1)=40个。大瓶和小瓶相差40-12=28个。故答案为B。

结合以上两道本质是鸡兔同笼问题的假设法求解,对于题干数量关系清晰数字较小的,运用方程法清晰易懂,推荐使用;对于数字大的,中公教育专家建议大家就一般问题转化成鸡兔同笼问题,建立“鸡兔同笼”问题的数学模型,运用学到的解题策略解决生活中的实际问题,在解题过程中灵活运用整除思想及带入排除思想以达到快速选择目的。

以上就是关于公务员数量关系解题技巧的相关内容,请考生认真阅读,更多精彩内容请考生持续关注精品学习网公务员频道!

相关推荐:

贵州2015年公务员考试行测指导:巧用尾数  

15年贵州公务员考试行测指导:资料分析注意点  

标签:行测指导

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。