编辑:sx_xiexh
2015-08-12
如何在第一时间了解公务员考试信息呢?精品学习网为大家提供了吉林2015年下半年行测备考相关内容,祝大家阅读愉快,更多公务员考试内容请随时关注精品学习网公务员频道。
一、整除的概念
如果一个整数a,除以一个自然数b,(b≠0)得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a。
二、数的整除特征
1. 能被2、5整除:末位上的数字能被2、5整除。
2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。
3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。
4. 能被3、9整除:各个数位上数字的和能被3、9整除。
5. 能被7整除:
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6. 能被11整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7. 能被13整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
三、举例验证
例如:判断123456789这九位数能否被11整除?
解:这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20。因为25-20=5,5不能被11整除,所以123456789不能被11整除。
例如:判断1059282是否是7的倍数?
解:把1059282分为1059和282两个数。因为1059-282=777,777是7的倍数,所以1059282也是7的倍数。
例如:判断3782651能否被13整除?
解:把3782651分为3782和651两个数。因为3782-651=3131。再把3131分为3和131两个数,因为131-3=128,而128不能被13整除,所以3782651不能被13整除。
四、实战演练
例1.下列四个数都是六位数,X是比10小的自然数,Y是零,一定能同时被2、3、5整除的数是多少?
A.XYXYXY B.XXXYXX C.XYYXYY D.XYYXYX
【答案】A。解析:该数“一定能同时被2、3、5整除”,则根据2、3、5的整除特性可知,该数的尾数只能为0,且各位数字之和能被3整除。根据题意,Y 是零且X和Y不能同时为零,故Y只能为尾数,排除B、D,根据3的整除特性,A项各位数字之和为3X,一定能被3整除,而C项各位数字之和为2X,不一定能被3整除,综上,选择A。
例2.六位数X2010Y能被88整除,则X、Y的取值分别为多少?
A.X=9,Y=4 B.X=7,Y=4 C.X=9,Y=8 D.X=8,Y=4
【答案】B。解析:能被88整除的数,即同时能够被8和11整除,根据8的整除特性,即数的后三位能够被8整除,所以10Y能被8整除,解得Y=4;根据 11的整除特性,奇数位数字之和与偶数位数字之和的差能被11整除,即2+1+Y-(0+0+X)=7-X,结合选项当X=7时,差为0,能够被11整除,因此可得X=7,Y=4,选择B。
例3.有一个自然数“X”,除以4的余数是3,除以5的余数是4,问“X”除以20的余数是多少?
A.4 B.5 C.12 D.19
【答案】D。解析:这个数加上1后可以整除4、5,因此也可以整除20。那么原数除以20余数是19
精品学习网为大家整理的吉林2015年下半年行测备考就到这里,预祝大家在公务员考试中能够取得优异的成绩。
相关推荐:
标签:行测指导
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。