上海公务员行测备考:点拨分析概率问题

编辑:zhangrongfangcms

2013-02-22

随着公务员的热潮,越来越多的人倾向于考公务员,在此,精品学习网的小编为大家提供了上海市公务员考试的行测考试的相关技巧知识,希望对大家有所帮助。

在公务员考试数量关系的考核中,“排列组合”历来是广大考生最为头疼的“拦路虎”,“排列组合”既是难点,又是重点,所以是考生必须引起重视的核心模块,能否突破排列组合这道关卡,将是考生最后取得高分的关键。而值得考生注意的是,最近联考的趋势,排列组合的考察逐渐出现创新点,就是基于传统排列组合问题之上的概率问题。概率问题在2012年国家公务员考试中也有所出现,概率问题也将成为排列组合中考核的要点,所以必须引起考生的重视,在这里将简单介绍一下概率问题的知识点,并以一道联考真题为例讲解一些概率问题解题思路。

在这里首先介绍一下概率问题的基本知识点,对于大多数基础比较差的考生而言,概率问题首先需要记住这样一个公式:

概率=满足条件的情况数÷总情况数

这个公式中,满足条件的情况数和总情况数的算法源于排列组合的相关知识,考生根据题意判断即可,而对于分情况概率和分步骤概率的解法,也是脱胎于排列组合问题,分类用加法,分步用乘法,因此有了这两个公式:

总体概率=满足条件的各种情况概率之和;

分步概率=满足条件的每个步骤概率之积。

以上是概率问题的一些基本概念,下面通过一道典型例题来讲解下概率问题的解题思路,这道题是是2011年424联考的第44题,一道典型的概率问题,题目是这样出的:

【2011-424-44】小王开车上班需经过4个交通路口,假设经过每个路口遇到红灯的概率分别为0.1、0.2、0.25、0.4,则他上班经过4个路口至少有一处遇到绿灯的概率是( )

A.0.899 B.0.988 C.0.989 D.0.998

这道题问4个路口至少有一处遇到绿灯的概率,有两种解法:一种是分情况讨论,分别算出一处绿灯,二处绿灯,三处绿灯,四处绿灯的概率,然后相加即可;另一种方法是逆向思维法,上文中反复提到,概率问题是排列组合的延伸,排列组合是概率问题的基础,而在解决排列组合问题的过程中,我们常用到这样一个公式:

满足条件的情况数=总情况数—不满足条件的情况数

而在概率问题中,这个公式也能适用,具体公式为:

某条件成立概率=总概率—该条件不成立的概率

值得注意的是,这里的总概率指的就是全概率,就是1,落实到这道题中,“至少有一次遇到绿灯的概率”的反面情况就是“一次绿灯都遇不到的概率”,即“全遇到红灯的概率”,而“全遇到红灯的概率”是指先后四个路口均遇到红灯,是分步概率,等于0.1×0.2×0.25×0.4,而答案就是1—0.1×0.2×0.25×0.4,等于0.998,选D。总结下这道题,解决这道题我们运用了分步概率计算和逆向思维的思想,考生务必掌握。

值得注意的是,近年来概率问题的考察点愈广愈难,涉及到几何概率,期望概率等,以后出现高等数学中的概率知识也未可知,要解决好这类问题,考生一方面要打下坚实的基础,学好排列组合以及本文所提到的基本概率知识,做到“以不变应万变”;另一方面,考生要加强概率方面的知识储备,达到“兵来将挡,水来土掩”的境界。祝考生们顺利通过考试!

更多信息

公务员考试频道

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。