国考行测出题频率最高题型:极值问题

编辑:qinh

2011-07-19

公务员考试虽然有一定的难度,出题的形式也千变万化,但是总有一些经典的题型常出常新,经久不衰。为备考2010年中央、国家机关公务员录用考试,京佳公务员教研老师特将国考中出题频率较高的题型予以汇总,并给予技巧点拨,希望广大考生能从中有所体会,把握出题规律、理顺知识脉络、掌握复习技巧、考出理想成绩。题型总结如下:

▲  极值问题

极值问题的提问方式经常为:“最多”、“至少”、“最少”等,是国家公务员考试中出题频率最高的题型之一。

一、本类试题基本解题思路如下:

1.  根据题目条件,设计解题方案;

2.  结合解题方案,确定最后数量;

二、常见设计解题方案原则如下:

(一)和固定

题目给出几个数的和,求“极值”,解题方案为:如果求“最大值”,则:假设其余数均为最小,用和减去其余数,即为所求;如果求“最小值”,则:假设其余数均为最大,用和减去其余数,即为所求。

真题一:2009年国考第118题

100人参加7项活动,已知每人只参加一项活动,而且每项活动参加的人数都不一样,那么,参加人数第四多的活动最多有几个人参加?(    )

A. 22               B. 21               C. 24               D. 23

【解析】A。这是一道“至多”问题。若要参加人数第四多的活动的人最多,则前三组的人数必须为1,2,3,并且后三组与第四多的人数必须依次相差最少。设第四多的人数为x,则后三组人数依次是x+1,x+2,x+3,则1+2+3+x+x+1+x+2+x+3=100,解得x=22。

真题二:2005年国考第50题

现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得(  )朵鲜花。

A.7                B.8                 C.9               D.10

【解析】A。题目问“分得鲜花最多的人至少”可以分多少朵,则可以假设分得鲜花最少的到最多的依次为:x、x+1、x+2、x+3、x+m(其中:x+m是分得鲜花数最多的,但是只比前四个人多一点,即m﹥3),则列方程为:

x+x+1+x+2+x+3+x+m=21,得:5x=15-m

因为m﹥3,故m=5,所以x=2,

因此这5个人分得鲜花数可以为:2、3、4、5、7,故分得鲜花最多的人至少分7朵,也就是不能再少了。


 

标签:行政综合

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。