编辑:sx_zhangby
2013-10-30
精品学习网会在认真分析考试题型和考试范围的基础上,为大家提供最新的公考数量关系公式,希望对于您的备考有所帮助,能够在您的考试中发挥巨大的作用!
一,骨牌公式
公式是:小于等于总数的2的N次方的最大值就是最后剩下的序号
二,指针重合公式
关于钟表指针重合的问题,有一个固定的公式:61T=S(S为题目中最小的单位在题目所要求的时间内所走的格书,确定S后算出T的最大值知道相遇多少次。)
三,图色公式
公式:(大正方形的边长的3次方)—(大正方形的边长—2)的3次方。
四,装错信封问题
小明给住在五个国家的五位朋友分别写信,这些信都装错的情况共有多少种 44种
f(n)=n!(1-1/1!+1/2!!-1/3!......+(-1)n(1/n!))
或者可以用下面的公式解答
装错1信 0种
装错2信:1种
3 2
4 9
5 44
递推公式是S(n)=n.S(n-1)+(-1)^n~~~~~
如果是6封信装错的话就是265~~~~
五,伯努利概率模型
某人一次涉及击中靶的概率是3/5,设计三次,至少两次中靶的概率是
集中概率3/5,则没集中概率2/5,即为两次集中的概率+三次集中的概率
公式为 C(2,3)*[(3/5)^2]*[(2/5)^1]+C(3,3)[(3/5)^3]*[(2/5)^0]
81/125
六,圆相交的交点问题
N个圆相交最多可以有多少个交点的问题分析 N*(N-1)
七,约数个数问题
M=A^X*B^Y 则M的约数个数是
(X+1)(Y+1)
360这个数的约数有多少个?这些约数的和是多少?
解〕360=2×2×2×3×3×5,所以360的任何一个约数都等于至多三个2(可以是零个,下同),至多两个3和至多一个5的积。如果我们把下面的式子
(1+2+4+8)×(1+3+9)×(1+5)
展开成一个和式,和式中的每一个加数都是在每个括号里各取一个数相乘的积。由前面的分析不难看出,360的每一个约数都恰好是这个展开式中的一个加数。由于第一个括号里有4个数,第二个括号里有3个数,第三个括号里有2个数,所以这个展开式中的加数个数为4×3×2=24,而这也就是360的约数的个数。另一方面,360的所有约数的和就等于这个展开式的和,因而也就等于
(1+2+4+8)×(1+3+9)×(1+5)
=15×13×6=1,170
答:360的约数有24个,这些约数的和是1,170。
甲数有9个约数,乙数有10个约数,甲、乙两数最小公倍数是2800,那么甲数和乙数分别是多少?
解:一个整数被它的约数除后,所得的商也是它的约数,这样的两个约数可以配成一对.只有配成对的两个约数相同时,也就是这个数是完全平方数时,它的约数的个数才会是奇数.因此,甲数是一个完全平方数.
2800=24×52×7.
在它含有的约数中是完全平方数,只有
1,22,24,52,22×52,24×52.
在这6个数中只有22×52=100,它的约数是(2+1)×(2+1)=9(个).
2800是甲、乙两数的最小公倍数,上面已算出甲数是100=22×52,因此乙数至少要含有24和7,而24×7=112恰好有(4+1)×(1+1)=10(个)约数,从而乙数就是112.综合起来,甲数是100,乙数是112.
以上就是精品学习网为您提供的公考数量关系公式,精品学习网愿意成为您备考当中最忠实的朋友,为您提供最新的考试辅导资料,请您密切关注!
相关推荐
标签:数量关系
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。