编辑:sx_songjm
2016-02-10
抽屉原理是公务员考试行政职业能力测验数量关系重要考点,也是相当一部分考生头痛的问题,以下为大家带来2016年公务员数学运算解题方法,让我们一起来看看详细内容吧~
从1、2、3、…、12中,至少要选( )个数,才可以保证其中一定包括两个数的差是7?
A. 7 B. 10 C. 9 D. 8
【答案】D
在这12个数中,差是7的数有以下5对:(12,5)、(11,4)、(10,3)、(9,2)、(8,1)。另有两个数6、7肯定不能与其他数形成差为7的情况。由此构造7个抽屉,只要有2个数取自一个抽屉,那么他们的差就等于7。从这7个抽屉中能够取8个数,则必然有2个数取自同一个抽屉。所以选择D选项。
一、抽屉问题原理
抽屉原理最先是由19世纪的德国数学家迪里赫莱运用于解决数学问题的,所以又称为“迪里赫莱原理”,也被称为“鸽巢原理”。
鸽巢原理的基本形式可以表述为:
定理1:如果把N+1只鸽子分成N个笼子,那么不管怎么分,都存在一个笼子,其中至少有两只鸽子。
证明:如果不存在一个笼子有两只鸽子,则每个笼子最多只有一只鸽子,从而我们可以得出,N个笼子最多有N只鸽子,与题意中的N+1个鸽子矛盾。
所以命题成立,故至少有一个笼子至少有两个鸽子。
鸽巢原理看起来很容易理解,不过有时使用鸽巢原理会得到一些有趣的结论:
比如:北京至少有两个人头发数一样多。
证明:常人的头发数在15万左右,可以假定没有人有超过100万根头发,但北京人口大于100万。如果我们让每一个人的头发数呈现这样的规律:第一个人的头发数为1,第二个人的头发数为2,以此类推,第100万个人的头发数为100万根;由此我们可以得到第100万零1个人的头发数必然为1-100万之中的一个。于是我们就可以证明出北京至少有两个人的头发数是一样多的。
定理2:如果有N个笼子,KN+1只鸽子,那么不管怎么分,至少有一个笼子里有K+1只鸽子。
举例:盒子里有10只黑袜子、12只蓝袜子,你需要拿一对同色的出来。假设你总共只能拿一次,只要3只就可以拿到相同颜色的袜子,因为颜色只有两种(鸽巢只有两个),而三只袜子(三只鸽子),从而得到“拿3只袜子出来,就能保证有一双同色”的结论。
二、公务员考试抽屉问题真题示例
在历年国家公务员考试以及地方公务员考试中,抽屉问题都是重要考点,下文,华图通过经典例题来分析抽屉原理的使用。
例1:从1、2、3、…、12中,至少要选( )个数,才可以保证其中一定包括两个数的差是7?
A. 7 B. 10 C. 9 D. 8
解析:在这12个数中,差是7的数有以下5对:(12,5)、(11,4)、(10,3)、(9,2)、(8,1)。另有两个数6、7肯定不能与其他数形成差为7的情况。由此构造7个抽屉,只要有2个数取自一个抽屉,那么他们的差就等于7。从这7个抽屉中能够取8个数,则必然有2个数取自同一个抽屉。所以选择D选项。
例2:某班有37名同学,至少有几个同学在同一月过生日?
解析:根据抽屉原理,可以设3×12+1个物品,一共是12个抽屉,则至少有4个同学在同一个月过生日。
熟练掌握抽屉原理,能有效提高数量关系中抽屉原理相关问题的解答速度,这对于寸秒寸金的行测考试来说是非常有利的。
获取更多2016年公务员数学运算解题方法相关文章请继续关注数量关系栏目,我们会以更快更便捷的方式服务于广大朋友!!!
相关推荐:
标签:数量关系
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。