编辑:
2014-04-22
这是指统计资料的排列不合逻辑,各个数据、项目之间相互矛盾。例如,企业卷烟库存商品中主要的组成部分是省产烟、省外烟、国外烟,如果企业报送的统计资料中,卷烟库存商品总金额显著下降,而省产烟库存金额大幅度上升,省外烟和国外烟库存金额只是持平或只有小幅度的下降,这就存在矛盾,表明数据有逻辑性错误。
(五)、数据的非同一性
它是指同一个指标在不同时期的统计范围、口径、内容、方法、单位和价格上有差别而造成的数据的不可比性。例如,2003年的统计资料中不含税价在30元以上的卷烟为一类卷烟,而在2004年的统计资料中,不含税价50元以上的卷烟为一类卷烟,如果在此基础上来比较两年的一类卷烟的销售量,而得出一类卷烟销售量大幅度下降的结论显然是不合理的。
(六)、数据不完整
这里指调查单位出现遗漏,所列项目的资料没有搜集齐全,不符合统计资料完整性的要求。数据不完整,就不可能反映研究对象的全貌和正确认识现象总体特征,最终也就难以对现象变化的规律性做出明确的判断,甚至会得出错误的结论。
(七)、统计手段和统计分析落后
目前许多企业统计工作仍处于手工状态,很原始!即使采用计算机也仅仅是减少工作量去做一些汇总、指标计算,并没真正引用先进的计算机技术和网络技术。所做的统计分析也局限于事后分析,即对统计数据进行单纯的讲解说明;不能利用网络技术实行信息共享等方式进行事前分析和预测。换句话说,“统计预测”这一职能根本没有发挥作用,缺乏对信息的收集、综合和系统化。
此外,常见的统计数据问题还有计算错误、笔误等。
可见,统计数据质量问题既可能是来自于设计阶段,也可能是来自于统计资料的整理阶段。
三、统计数据质量控制方法
(一)、统计数据质量控制的原则应当是全过程的、全员参加的、以预防为主的数据质量控制。
首先,统计数据质量控制要贯穿于统计工作的全过程。每进行一步,都要对已完成的工作进行检查、对已发生的差错及时进行纠正,做到层层把关,防止差错流入下一个工作环节,以保证统计数据的质量。其次,参加统计数据质量管理和控制的人员应当是全面的。全体统计工作者都要树立数据质量意识,各个主要的工作环节都要落实专人负责。统计数据质量的好坏,是许多工作和许多统计工作环节质量的综合反映,牵涉到统计工作的所有部门和人员,因此,提高数据质量需要依靠所有统计工作者的共同努力,决不是单纯靠某一个部门或少数人所能搞得好、抓得了的。只有人人关心数据质量,大家都对数据质量高度负责,产生优质的统计数据才有坚实的群众基础。因而,统计数据质量控制要求把差错消灭在它的形成过程中,做到防检结合,以防为主。这就要求有关人员在质量控制中具有超前意识,抛弃那种出现了统计数据问题才想办法解决问题的被动的局面。
实行全员性的质量控制,就要把统计数据质量目标及其关键交给广大统计工作者,落实到每个工作岗位,使每个岗位都有明确的工作质量标准,做到合理分工、职责明确,职责越明确,数据质量控制就越有保证。
标签:统计学论文
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。